TY - JOUR
T1 - Dynamic modelling of a rotor-bearinghousing system including a localized fault
AU - Liu, Jing
AU - Xu, Yajun
AU - Shao, Yimin
N1 - Publisher Copyright:
© IMechE 2017.
PY - 2018/9
Y1 - 2018/9
N2 - An in-depth understanding of the dynamic characteristics through rotor-bearing-housing systems is very valuable for fault detection and diagnosis applications of rotating machines such as high-speed spindle, roll mill, gearbox, engines, etc. A new vibration model of a rotor-bearing-housing system considering the rotor compliance, elastic interface between the housing and outer race, housing compliance, and time-dependent excitations introduced by a localized fault on the inner and outer races of an inherent ball bearing is proposed in this work. An analytical method for calculating the time-dependent excitations including the time-dependent displacement excitation and contact stiffness coefficient between the ball and fault edges is presented. Differences between vibration responses of a rotor-bearing-housing system from the proposed model and the previous model without the rotor compliance in the literature are discussed. The presented model is used to discuss the influences of all the rotor compliance, housing compliance, and fault sizes on the races of the inherent ball bearing on the vibration responses and vibration transmission characteristics through the rotor-bearing-housing system, which cannot be formulated by the current dynamic models in the listed references. An experimental study is introduced to validate the presented model. The results show that the rotor compliance and time-dependent contact stiffness coefficient caused by the fault have great influence on the dynamic characteristics through the rotor-bearing-housing system. It also seems that the developed method can provide a new vibration modelling method for the vibration analysis for a rotor-bearing-housing system with and without the faults.
AB - An in-depth understanding of the dynamic characteristics through rotor-bearing-housing systems is very valuable for fault detection and diagnosis applications of rotating machines such as high-speed spindle, roll mill, gearbox, engines, etc. A new vibration model of a rotor-bearing-housing system considering the rotor compliance, elastic interface between the housing and outer race, housing compliance, and time-dependent excitations introduced by a localized fault on the inner and outer races of an inherent ball bearing is proposed in this work. An analytical method for calculating the time-dependent excitations including the time-dependent displacement excitation and contact stiffness coefficient between the ball and fault edges is presented. Differences between vibration responses of a rotor-bearing-housing system from the proposed model and the previous model without the rotor compliance in the literature are discussed. The presented model is used to discuss the influences of all the rotor compliance, housing compliance, and fault sizes on the races of the inherent ball bearing on the vibration responses and vibration transmission characteristics through the rotor-bearing-housing system, which cannot be formulated by the current dynamic models in the listed references. An experimental study is introduced to validate the presented model. The results show that the rotor compliance and time-dependent contact stiffness coefficient caused by the fault have great influence on the dynamic characteristics through the rotor-bearing-housing system. It also seems that the developed method can provide a new vibration modelling method for the vibration analysis for a rotor-bearing-housing system with and without the faults.
KW - Dynamic modelling
KW - Localized fault
KW - Rotor compliance
KW - Rotor-bearing-housing system
KW - Vibration transmission characteristics
UR - http://www.scopus.com/inward/record.url?scp=85042537316&partnerID=8YFLogxK
U2 - 10.1177/1464419317738427
DO - 10.1177/1464419317738427
M3 - 文章
AN - SCOPUS:85042537316
SN - 1464-4193
VL - 232
SP - 385
EP - 397
JO - Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
JF - Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
IS - 3
ER -