Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection

Xu Li, Xue Wang, Zexing Du, Qing Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Video anomaly detection plays an increasingly crucial role in intelligent surveillance systems. Inspired by previous unsupervised methods, this paper focuses on detecting frame-level anomalies with long-term temporal dependencies. To this end, we propose a dual-scale temporal dependency learning method for video anomaly detection model, which consists of two main modules: a single-frame reconstruction module and a multi-frame feature enhancement module, processed end-to-end without relying on any pre-trained models. To validate the proposed approach, we introduce a new Elevator dataset containing various types of remote temporal dependency anomalies. Experimental results on the self-constructed Elevator dataset and two benchmarks demonstrate the effectiveness of our proposed approach.

源语言英语
主期刊名Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Proceedings
编辑Zhouchen Lin, Hongbin Zha, Ming-Ming Cheng, Ran He, Cheng-Lin Liu, Kurban Ubul, Wushouer Silamu, Jie Zhou
出版商Springer Science and Business Media Deutschland GmbH
284-298
页数15
ISBN(印刷版)9789819787913
DOI
出版状态已出版 - 2025
活动7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024 - Urumqi, 中国
期限: 18 10月 202420 10月 2024

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15040 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024
国家/地区中国
Urumqi
时期18/10/2420/10/24

指纹

探究 'Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此