TY - JOUR
T1 - Dual relaxation behaviors driven by a homogeneous and stable dual-interface charge layer based on an EGaIn absorber
AU - Chen, Geng
AU - Zhang, Tao
AU - Zhang, Limin
AU - Tao, Kai
AU - Chen, Qiang
AU - Wu, Hongjing
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - Interface engineering, by modulating defect distribution and impedance at interfaces and inducing interfacial polarization, has proven to be an effective strategy for optimizing dielectric properties. However, the inherent incompatibility between heterogeneous phases presents a significant challenge in constructing multi-heterointerfaces and understanding how their distribution influences dielectric performance. Herein, we constructed an EGaIn@Ni/NiO/Ga2O3 composite structure by employing a low-intensity ultrasound-assisted galvanic replacement reaction followed by high-temperature annealing. The controlled addition of Ni salts allowed for the fine-tuning of Ni, NiO, and In concentrations and their spatial distribution within the interfacial architecture. Annealing treatment induced a transition from amorphous to crystalline phases, triggering dual relaxation behaviors between EGaIn/Ni and NiO/Ga2O3. Additionally, significant charge accumulation was observed at the NiO/Ga2O3 interface, likely due to the substantial work function difference between Ni and NiO, coupled with the low barrier height between EGaIn and Ni, which facilitates electron migration. Consequently, the optimized samples exhibited a maximum absorption bandwidth of 7.92 GHz, which is the highest among the EGaIn-based absorbers reported in the literature. This work not only elucidates the mechanism by which multi-heterogeneous interfacial distributions regulate the dielectric properties but also provides an effective approach for modulating the electromagnetic wave performance of liquid metals.
AB - Interface engineering, by modulating defect distribution and impedance at interfaces and inducing interfacial polarization, has proven to be an effective strategy for optimizing dielectric properties. However, the inherent incompatibility between heterogeneous phases presents a significant challenge in constructing multi-heterointerfaces and understanding how their distribution influences dielectric performance. Herein, we constructed an EGaIn@Ni/NiO/Ga2O3 composite structure by employing a low-intensity ultrasound-assisted galvanic replacement reaction followed by high-temperature annealing. The controlled addition of Ni salts allowed for the fine-tuning of Ni, NiO, and In concentrations and their spatial distribution within the interfacial architecture. Annealing treatment induced a transition from amorphous to crystalline phases, triggering dual relaxation behaviors between EGaIn/Ni and NiO/Ga2O3. Additionally, significant charge accumulation was observed at the NiO/Ga2O3 interface, likely due to the substantial work function difference between Ni and NiO, coupled with the low barrier height between EGaIn and Ni, which facilitates electron migration. Consequently, the optimized samples exhibited a maximum absorption bandwidth of 7.92 GHz, which is the highest among the EGaIn-based absorbers reported in the literature. This work not only elucidates the mechanism by which multi-heterogeneous interfacial distributions regulate the dielectric properties but also provides an effective approach for modulating the electromagnetic wave performance of liquid metals.
UR - http://www.scopus.com/inward/record.url?scp=85211975828&partnerID=8YFLogxK
U2 - 10.1039/d4mh01564a
DO - 10.1039/d4mh01564a
M3 - 文章
AN - SCOPUS:85211975828
SN - 2051-6347
JO - Materials Horizons
JF - Materials Horizons
ER -