TY - JOUR
T1 - Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information
AU - Xia, Yong
AU - Eberl, Stefan
AU - Wen, Lingfeng
AU - Fulham, Michael
AU - Feng, David Dagan
PY - 2012/1
Y1 - 2012/1
N2 - Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images.
AB - Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images.
KW - Dual-modality medical imaging
KW - Functional PET imaging
KW - Image segmentation
KW - Medical image analyze
UR - http://www.scopus.com/inward/record.url?scp=83555176436&partnerID=8YFLogxK
U2 - 10.1016/j.compmedimag.2011.06.004
DO - 10.1016/j.compmedimag.2011.06.004
M3 - 文章
C2 - 21719257
AN - SCOPUS:83555176436
SN - 0895-6111
VL - 36
SP - 47
EP - 53
JO - Computerized Medical Imaging and Graphics
JF - Computerized Medical Imaging and Graphics
IS - 1
ER -