TY - JOUR
T1 - Dual-Attention-Guided Network for Ghost-Free High Dynamic Range Imaging
AU - Yan, Qingsen
AU - Gong, Dong
AU - Shi, Javen Qinfeng
AU - van den Hengel, Anton
AU - Shen, Chunhua
AU - Reid, Ian
AU - Zhang, Yanning
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/1
Y1 - 2022/1
N2 - Ghosting artifacts caused by moving objects and misalignments are a key challenge in constructing high dynamic range (HDR) images. Current methods first register the input low dynamic range (LDR) images using optical flow before merging them. This process is error-prone, and often causes ghosting in the resulting merged image. We propose a novel dual-attention-guided end-to-end deep neural network, called DAHDRNet, which produces high-quality ghost-free HDR images. Unlike previous methods that directly stack the LDR images or features for merging, we use dual-attention modules to guide the merging according to the reference image. DAHDRNet thus exploits both spatial attention and feature channel attention to achieve ghost-free merging. The spatial attention modules automatically suppress undesired components caused by misalignments and saturation, and enhance the fine details in the non-reference images. The channel attention modules adaptively rescale channel-wise features by considering the inter-dependencies between channels. The dual-attention approach is applied recurrently to further improve feature representation, and thus alignment. A dilated residual dense block is devised to make full use of the hierarchical features and increase the receptive field when hallucinating missing details. We employ a hybrid loss function, which consists of a perceptual loss, a total variation loss, and a content loss to recover photo-realistic images. Although DAHDRNet is not flow-based, it can be applied to flow-based registration to reduce artifacts caused by optical-flow estimation errors. Experiments on different datasets show that the proposed DAHDRNet achieves state-of-the-art quantitative and qualitative results.
AB - Ghosting artifacts caused by moving objects and misalignments are a key challenge in constructing high dynamic range (HDR) images. Current methods first register the input low dynamic range (LDR) images using optical flow before merging them. This process is error-prone, and often causes ghosting in the resulting merged image. We propose a novel dual-attention-guided end-to-end deep neural network, called DAHDRNet, which produces high-quality ghost-free HDR images. Unlike previous methods that directly stack the LDR images or features for merging, we use dual-attention modules to guide the merging according to the reference image. DAHDRNet thus exploits both spatial attention and feature channel attention to achieve ghost-free merging. The spatial attention modules automatically suppress undesired components caused by misalignments and saturation, and enhance the fine details in the non-reference images. The channel attention modules adaptively rescale channel-wise features by considering the inter-dependencies between channels. The dual-attention approach is applied recurrently to further improve feature representation, and thus alignment. A dilated residual dense block is devised to make full use of the hierarchical features and increase the receptive field when hallucinating missing details. We employ a hybrid loss function, which consists of a perceptual loss, a total variation loss, and a content loss to recover photo-realistic images. Although DAHDRNet is not flow-based, it can be applied to flow-based registration to reduce artifacts caused by optical-flow estimation errors. Experiments on different datasets show that the proposed DAHDRNet achieves state-of-the-art quantitative and qualitative results.
KW - Attention mechanism
KW - De-ghosting
KW - Deep learning
KW - High dynamic range imaging
UR - http://www.scopus.com/inward/record.url?scp=85118197652&partnerID=8YFLogxK
U2 - 10.1007/s11263-021-01535-y
DO - 10.1007/s11263-021-01535-y
M3 - 文章
AN - SCOPUS:85118197652
SN - 0920-5691
VL - 130
SP - 76
EP - 94
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 1
ER -