TY - GEN
T1 - Disentangle Then Calibrate
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
AU - Chen, Yuanyuan
AU - Guo, Xiaoqing
AU - Xia, Yong
AU - Yuan, Yixuan
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases based on scarce amount of data is of far-reaching significance. Existing methods target only at rare diseases diagnosis, while neglect to preserve the performance of common disease diagnosis. To address this issue, we first disentangle the features of common diseases into a disease-shared part and a disease-specific part, and then employ the disease-shared features alone to enrich rare-disease features, without interfering the discriminability of common diseases. In this paper, we propose a new setting, i.e., generalized rare disease diagnosis to simultaneously diagnose common and rare diseases. A novel selective treasure sharing (STS) framework is devised under this setting, which consists of a gradient-induced disentanglement (GID) module and a distribution-targeted calibration (DTC) module. The GID module disentangles the common-disease features into disease-shared channels and disease-specific channels based on the gradient agreement across different diseases. Then, the DTC module employs only disease-shared channels to enrich rare-disease features via distribution calibration. Hence, abundant rare-disease features are generated to alleviate model overfitting and ensure a more accurate decision boundary. Extensive experiments conducted on two medical image classification datasets demonstrate the superior performance of the proposed STS framework.
AB - Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases based on scarce amount of data is of far-reaching significance. Existing methods target only at rare diseases diagnosis, while neglect to preserve the performance of common disease diagnosis. To address this issue, we first disentangle the features of common diseases into a disease-shared part and a disease-specific part, and then employ the disease-shared features alone to enrich rare-disease features, without interfering the discriminability of common diseases. In this paper, we propose a new setting, i.e., generalized rare disease diagnosis to simultaneously diagnose common and rare diseases. A novel selective treasure sharing (STS) framework is devised under this setting, which consists of a gradient-induced disentanglement (GID) module and a distribution-targeted calibration (DTC) module. The GID module disentangles the common-disease features into disease-shared channels and disease-specific channels based on the gradient agreement across different diseases. Then, the DTC module employs only disease-shared channels to enrich rare-disease features via distribution calibration. Hence, abundant rare-disease features are generated to alleviate model overfitting and ensure a more accurate decision boundary. Extensive experiments conducted on two medical image classification datasets demonstrate the superior performance of the proposed STS framework.
UR - http://www.scopus.com/inward/record.url?scp=85139063479&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16437-8_49
DO - 10.1007/978-3-031-16437-8_49
M3 - 会议稿件
AN - SCOPUS:85139063479
SN - 9783031164361
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 512
EP - 522
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 18 September 2022 through 22 September 2022
ER -