Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages

Yongsheng Pan, Mingxia Liu, Chunfeng Lian, Yong Xia, Dinggang Shen

科研成果: 书/报告/会议事项章节会议稿件同行评审

39 引用 (Scopus)

摘要

Incomplete data problem is unavoidable in automated brain disease diagnosis using multi-modal neuroimages (e.g., MRI and PET). To utilize all available subjects to train diagnostic models, deep networks have been proposed to directly impute missing neuroimages by treating all voxels in a 3D volume equally. These methods are not diagnosis-oriented, as they ignore the disease-image specific information conveyed in multi-modal neuroimages, i.e., (1) disease may cause abnormalities only at local brain regions, and (2) different modalities may highlight different disease-associated regions. In this paper, we propose a unified disease-image specific deep learning framework for joint image synthesis and disease diagnosis using incomplete multi-modal neuroimaging data. Specifically, by using the whole-brain images as input, we design a disease-image specific neural network (DSNN) to implicitly model disease-image specificity in MRI/PET scans using the spatial cosine kernel. Moreover, we develop a feature-consistent generative adversarial network (FGAN) to synthesize missing images, encouraging DSNN feature maps of synthetic images and their respective real images to be consistent. Our DSNN and FGAN can be jointly trained, by which missing images are imputed in a task-oriented manner for brain disease diagnosis. Experimental results on 1, 466 subjects suggest that our method not only generates reasonable neuroimages, but also achieves the state-of-the-art performance in both tasks of Alzheimer’s disease (AD) identification and mild cognitive impairment (MCI) conversion prediction.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
编辑Dinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
出版商Springer Science and Business Media Deutschland GmbH
137-145
页数9
ISBN(印刷版)9783030322472
DOI
出版状态已出版 - 2019
活动22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, 中国
期限: 13 10月 201917 10月 2019

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11766 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
国家/地区中国
Shenzhen
时期13/10/1917/10/19

指纹

探究 'Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages' 的科研主题。它们共同构成独一无二的指纹。

引用此