TY - GEN
T1 - Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages
AU - Pan, Yongsheng
AU - Liu, Mingxia
AU - Lian, Chunfeng
AU - Xia, Yong
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
PY - 2019
Y1 - 2019
N2 - Incomplete data problem is unavoidable in automated brain disease diagnosis using multi-modal neuroimages (e.g., MRI and PET). To utilize all available subjects to train diagnostic models, deep networks have been proposed to directly impute missing neuroimages by treating all voxels in a 3D volume equally. These methods are not diagnosis-oriented, as they ignore the disease-image specific information conveyed in multi-modal neuroimages, i.e., (1) disease may cause abnormalities only at local brain regions, and (2) different modalities may highlight different disease-associated regions. In this paper, we propose a unified disease-image specific deep learning framework for joint image synthesis and disease diagnosis using incomplete multi-modal neuroimaging data. Specifically, by using the whole-brain images as input, we design a disease-image specific neural network (DSNN) to implicitly model disease-image specificity in MRI/PET scans using the spatial cosine kernel. Moreover, we develop a feature-consistent generative adversarial network (FGAN) to synthesize missing images, encouraging DSNN feature maps of synthetic images and their respective real images to be consistent. Our DSNN and FGAN can be jointly trained, by which missing images are imputed in a task-oriented manner for brain disease diagnosis. Experimental results on 1, 466 subjects suggest that our method not only generates reasonable neuroimages, but also achieves the state-of-the-art performance in both tasks of Alzheimer’s disease (AD) identification and mild cognitive impairment (MCI) conversion prediction.
AB - Incomplete data problem is unavoidable in automated brain disease diagnosis using multi-modal neuroimages (e.g., MRI and PET). To utilize all available subjects to train diagnostic models, deep networks have been proposed to directly impute missing neuroimages by treating all voxels in a 3D volume equally. These methods are not diagnosis-oriented, as they ignore the disease-image specific information conveyed in multi-modal neuroimages, i.e., (1) disease may cause abnormalities only at local brain regions, and (2) different modalities may highlight different disease-associated regions. In this paper, we propose a unified disease-image specific deep learning framework for joint image synthesis and disease diagnosis using incomplete multi-modal neuroimaging data. Specifically, by using the whole-brain images as input, we design a disease-image specific neural network (DSNN) to implicitly model disease-image specificity in MRI/PET scans using the spatial cosine kernel. Moreover, we develop a feature-consistent generative adversarial network (FGAN) to synthesize missing images, encouraging DSNN feature maps of synthetic images and their respective real images to be consistent. Our DSNN and FGAN can be jointly trained, by which missing images are imputed in a task-oriented manner for brain disease diagnosis. Experimental results on 1, 466 subjects suggest that our method not only generates reasonable neuroimages, but also achieves the state-of-the-art performance in both tasks of Alzheimer’s disease (AD) identification and mild cognitive impairment (MCI) conversion prediction.
UR - http://www.scopus.com/inward/record.url?scp=85075697955&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-32248-9_16
DO - 10.1007/978-3-030-32248-9_16
M3 - 会议稿件
AN - SCOPUS:85075697955
SN - 9783030322472
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 137
EP - 145
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
A2 - Shen, Dinggang
A2 - Yap, Pew-Thian
A2 - Liu, Tianming
A2 - Peters, Terry M.
A2 - Khan, Ali
A2 - Staib, Lawrence H.
A2 - Essert, Caroline
A2 - Zhou, Sean
PB - Springer Science and Business Media Deutschland GmbH
T2 - 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 13 October 2019 through 17 October 2019
ER -