TY - GEN
T1 - Digital Twins for Modern Power Electronics
T2 - An investigation into the enabling technologies and applications
AU - Bai, Hao
AU - Kuprat, Johannes
AU - Osorio, Caio
AU - Liu, Chen
AU - Liserre, Marco
AU - Gao, Fei
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2024
Y1 - 2024
N2 - Digital twins are emerging in power electronics as a tool for optimized design, fast prototyping, and smart maintenance, given the increasing demand in terms of high power density, reliability, and low cost. A power electronics digital twin can be regarded as a virtual representation of a power electronics system, embodied by a high-fidelity model running in real time, of which the states and model parameters are updated based on the feedback from the sensors or their data fusions. Digital twin models are developed in multiple domains and run in real time or even faster than real time. The data collected from the physical entities are transferred with controlled latencies and quality, and then processed to iterate the models to represent physical power electronics from application-oriented views. However, due to the nonlinearities and fast switching behaviors of power electronics, one significant challenge is to ensure high fidelity and fast computation simultaneously, which stimulates the real-time simulation (RTS) of power electronics with an ultralow time step. Moreover, the electrical, thermal, and electrothermal aspects shall all be considered to improve the model's accuracy. To consider the uncertainties, the parameters of the digital twin models are either identified by advanced optimization algorithms or represented by probabilistic expressions. To make it possible, real-time communication should be established between the physical and digital twins. Empowered by modern Internet of Things (IoT) technology, many sensor signals can be transferred in a timely fashion to ensure real-time capability of the digital twin. The digital twin gives insightful information about its physical counterpart based on which smart decisions can be made to improve the design, prototyping, control, and lifecycle management of power electronics converters and systems. In this article, we review the digital twin of modern power electronics, and get an insight into its enabling technologies and possible applications.
AB - Digital twins are emerging in power electronics as a tool for optimized design, fast prototyping, and smart maintenance, given the increasing demand in terms of high power density, reliability, and low cost. A power electronics digital twin can be regarded as a virtual representation of a power electronics system, embodied by a high-fidelity model running in real time, of which the states and model parameters are updated based on the feedback from the sensors or their data fusions. Digital twin models are developed in multiple domains and run in real time or even faster than real time. The data collected from the physical entities are transferred with controlled latencies and quality, and then processed to iterate the models to represent physical power electronics from application-oriented views. However, due to the nonlinearities and fast switching behaviors of power electronics, one significant challenge is to ensure high fidelity and fast computation simultaneously, which stimulates the real-time simulation (RTS) of power electronics with an ultralow time step. Moreover, the electrical, thermal, and electrothermal aspects shall all be considered to improve the model's accuracy. To consider the uncertainties, the parameters of the digital twin models are either identified by advanced optimization algorithms or represented by probabilistic expressions. To make it possible, real-time communication should be established between the physical and digital twins. Empowered by modern Internet of Things (IoT) technology, many sensor signals can be transferred in a timely fashion to ensure real-time capability of the digital twin. The digital twin gives insightful information about its physical counterpart based on which smart decisions can be made to improve the design, prototyping, control, and lifecycle management of power electronics converters and systems. In this article, we review the digital twin of modern power electronics, and get an insight into its enabling technologies and possible applications.
UR - http://www.scopus.com/inward/record.url?scp=85203648612&partnerID=8YFLogxK
U2 - 10.1109/MELE.2024.3423111
DO - 10.1109/MELE.2024.3423111
M3 - 文章
AN - SCOPUS:85203648612
SN - 2325-5897
VL - 12
SP - 50
EP - 67
JO - IEEE Electrification Magazine
JF - IEEE Electrification Magazine
ER -