TY - JOUR
T1 - Dielectric, impedance and piezoelectric properties of (K0.5Nd0.5)TiO3-doped 0.67BiFeO3-0.33BaTiO3 ceramics
AU - Zhao, Nianshun
AU - Fan, Huiqing
AU - Ren, Xiaohu
AU - Ma, Jiangwei
AU - Bao, Jie
AU - Guo, Y.
AU - Zhou, Yunyan
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/11
Y1 - 2019/11
N2 - A novel (0.67-x)BiFeO3-0.33BaTiO3-x(K0.5Nd0.5)TiO3 (KNT100x, x = 0.0, 0.02, 0.04, 0.06, 0.08 mol%) ceramics were fabricated and their microstructure and electrical properties were studied. All samples displayed a pseudo-cubic symmetry, and adding of KNT had little effect on grain size. The dielectric analysis displayed the dispersion increases with the addition of KNT compositions, showing strong relaxor properties. Besides, high dielectric constant (ε’) of 23000 and dielectric peak temperature (Tm) of 390 °C remain at 1 kHz in the x = 0.02 sample while the dielectric loss (tanδ) dropped below 0.5 in the range of 30–400 °C, showing excellent electrical insulation performance. In addition, doping of KNT had obvious influence on the strain, and a large strain (Smax) of 0.26% was obtained at x = 0.02 due to the increase of electrical insulation. More importantly, the strain at 50 kV cm−1 enhanced significantly with temperature increasing, reaching a maximum strain of 0.75% with a small hysteresis coefficient of 30% at 110 °C. Particularly, KNT02 exhibited excellent fatigue resistance within 105 fatigue cycles. Presumably these results are attributed to the coexistence of ferroelectric and non-ergodic relaxor domains and the thermally activated domain wall motion.
AB - A novel (0.67-x)BiFeO3-0.33BaTiO3-x(K0.5Nd0.5)TiO3 (KNT100x, x = 0.0, 0.02, 0.04, 0.06, 0.08 mol%) ceramics were fabricated and their microstructure and electrical properties were studied. All samples displayed a pseudo-cubic symmetry, and adding of KNT had little effect on grain size. The dielectric analysis displayed the dispersion increases with the addition of KNT compositions, showing strong relaxor properties. Besides, high dielectric constant (ε’) of 23000 and dielectric peak temperature (Tm) of 390 °C remain at 1 kHz in the x = 0.02 sample while the dielectric loss (tanδ) dropped below 0.5 in the range of 30–400 °C, showing excellent electrical insulation performance. In addition, doping of KNT had obvious influence on the strain, and a large strain (Smax) of 0.26% was obtained at x = 0.02 due to the increase of electrical insulation. More importantly, the strain at 50 kV cm−1 enhanced significantly with temperature increasing, reaching a maximum strain of 0.75% with a small hysteresis coefficient of 30% at 110 °C. Particularly, KNT02 exhibited excellent fatigue resistance within 105 fatigue cycles. Presumably these results are attributed to the coexistence of ferroelectric and non-ergodic relaxor domains and the thermally activated domain wall motion.
KW - Dielectric properties
KW - Electrical insulation
KW - Relaxor
KW - Strain
UR - http://www.scopus.com/inward/record.url?scp=85066509045&partnerID=8YFLogxK
U2 - 10.1016/j.jeurceramsoc.2019.06.001
DO - 10.1016/j.jeurceramsoc.2019.06.001
M3 - 文章
AN - SCOPUS:85066509045
SN - 0955-2219
VL - 39
SP - 4096
EP - 4102
JO - Journal of the European Ceramic Society
JF - Journal of the European Ceramic Society
IS - 14
ER -