Deep neural rejection against adversarial examples

Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, Fabio Roli

科研成果: 期刊稿件文章同行评审

52 引用 (Scopus)

摘要

Despite the impressive performances reported by deep neural networks in different application domains, they remain largely vulnerable to adversarial examples, i.e., input samples that are carefully perturbed to cause misclassification at test time. In this work, we propose a deep neural rejection mechanism to detect adversarial examples, based on the idea of rejecting samples that exhibit anomalous feature representations at different network layers. With respect to competing approaches, our method does not require generating adversarial examples at training time, and it is less computationally demanding. To properly evaluate our method, we define an adaptive white-box attack that is aware of the defense mechanism and aims to bypass it. Under this worst-case setting, we empirically show that our approach outperforms previously proposed methods that detect adversarial examples by only analyzing the feature representation provided by the output network layer.

源语言英语
文章编号5
期刊Eurasip Journal on Information Security
2020
1
DOI
出版状态已出版 - 1 12月 2020

指纹

探究 'Deep neural rejection against adversarial examples' 的科研主题。它们共同构成独一无二的指纹。

引用此