Deep neural network-based fault diagnosis approach for the rocket propelling nozzle in the glide

Kai Quan, Bing Xiao, Zhenzhou Fu, Jia Yang, Chaofan Wu, Yiyan Wei

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper presents an intelligent approach for fault diagnosis about rocket nozzle in glide phase. In contrast to the commonly used observer or any other technologies over the complicated rocket, the proposed approach is based on a deep neural network for processing fault problems without rocket mathematical model accurately. The intelligent method, based on a Dynamic neural network with cross-entropy lose function, automatically identifies the faults of rocket nozzle, effectively acting as a fault classifier. This approach provides a simple solution for modeling difficult problems and allows multi-classes faults to be recognized in a straightforward way.

源语言英语
主期刊名2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781538611715
DOI
出版状态已出版 - 8月 2018
已对外发布
活动2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018 - Xiamen, 中国
期限: 10 8月 201812 8月 2018

出版系列

姓名2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018

会议

会议2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
国家/地区中国
Xiamen
时期10/08/1812/08/18

指纹

探究 'Deep neural network-based fault diagnosis approach for the rocket propelling nozzle in the glide' 的科研主题。它们共同构成独一无二的指纹。

引用此