TY - GEN
T1 - Deep 3D Vessel Segmentation based on Cross Transformer Network
AU - Pan, Chengwei
AU - Qi, Baolian
AU - Zhao, Gangming
AU - Liu, Jiaheng
AU - Fang, Chaowei
AU - Zhang, Dingwen
AU - Li, Jinpeng
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - The coronary microvascular disease poses a great threat to human health. Computer-aided analysis/diagnosis systems help physicians intervene in the disease at early stages, where 3D vessel segmentation is a fundamental step. However, there is a lack of carefully annotated dataset to support algorithm development and evaluation. On the other hand, the commonly-used U-Net structures often yield disconnected and inaccurate segmentation results, especially for small vessel structures. In this paper, motivated by the data scarcity, we first construct two large-scale vessel segmentation datasets consisting of 100 and 500 computed tomography (CT) volumes with pixel-level annotations by experienced radiologists. To enhance the U-Net, we further propose the cross transformer network (CTN) for fine-grained vessel segmentation. In CTN, a transformer module is constructed in parallel to a U-Net to learn long-distance dependencies between different anatomical regions; and these dependencies are communicated to the U-Net at multiple stages to endow it with global awareness. Experimental results on the two in-house datasets indicate that this hybrid model alleviates unexpected disconnections by considering topological information across regions. Our codes, together with the trained models are made publicly available at https://github.com/qibaolian/ctn.
AB - The coronary microvascular disease poses a great threat to human health. Computer-aided analysis/diagnosis systems help physicians intervene in the disease at early stages, where 3D vessel segmentation is a fundamental step. However, there is a lack of carefully annotated dataset to support algorithm development and evaluation. On the other hand, the commonly-used U-Net structures often yield disconnected and inaccurate segmentation results, especially for small vessel structures. In this paper, motivated by the data scarcity, we first construct two large-scale vessel segmentation datasets consisting of 100 and 500 computed tomography (CT) volumes with pixel-level annotations by experienced radiologists. To enhance the U-Net, we further propose the cross transformer network (CTN) for fine-grained vessel segmentation. In CTN, a transformer module is constructed in parallel to a U-Net to learn long-distance dependencies between different anatomical regions; and these dependencies are communicated to the U-Net at multiple stages to endow it with global awareness. Experimental results on the two in-house datasets indicate that this hybrid model alleviates unexpected disconnections by considering topological information across regions. Our codes, together with the trained models are made publicly available at https://github.com/qibaolian/ctn.
KW - 3D vessel segmentation
KW - Coronary microvascular disease
KW - Transformer
UR - http://www.scopus.com/inward/record.url?scp=85146658393&partnerID=8YFLogxK
U2 - 10.1109/BIBM55620.2022.9995690
DO - 10.1109/BIBM55620.2022.9995690
M3 - 会议稿件
AN - SCOPUS:85146658393
T3 - Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
SP - 1115
EP - 1120
BT - Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
A2 - Adjeroh, Donald
A2 - Long, Qi
A2 - Shi, Xinghua
A2 - Guo, Fei
A2 - Hu, Xiaohua
A2 - Aluru, Srinivas
A2 - Narasimhan, Giri
A2 - Wang, Jianxin
A2 - Kang, Mingon
A2 - Mondal, Ananda M.
A2 - Liu, Jin
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Y2 - 6 December 2022 through 8 December 2022
ER -