Data Augmentation and Spatial-Spectral Residual Framework for Hyperspectral Image Classification Using Limited Samples

Lin Zhou, Jinbiao Zhu, Jihao Yang, Jie Geng

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Hyperspectral image classification is a prominent topic in many remote sensing applications, but the limited number of manually annotated samples leads to performance bottlenecks. To resolve this issue, a data augmentation and spatial-spectral residual framework is proposed for hyperspectral image classification using limited samples. Firstly, an unsupervised pseudo-sample generation method is proposed to augment the sample set, and the generalization capability of the model is improved by mixup operations. Then, to adequately extract the spatial-spectral features of hyperspectral images, a spatial-spectral residual framework is designed to improve the classification performance of the model. The qualitative and quantitative experiments were carried out on Indian Pines dataset to validate the effectiveness of the model.

源语言英语
主期刊名Proceedings of 2022 IEEE International Conference on Unmanned Systems, ICUS 2022
编辑Rong Song
出版商Institute of Electrical and Electronics Engineers Inc.
490-495
页数6
ISBN(电子版)9781665484565
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Unmanned Systems, ICUS 2022 - Guangzhou, 中国
期限: 28 10月 202230 10月 2022

出版系列

姓名Proceedings of 2022 IEEE International Conference on Unmanned Systems, ICUS 2022

会议

会议2022 IEEE International Conference on Unmanned Systems, ICUS 2022
国家/地区中国
Guangzhou
时期28/10/2230/10/22

指纹

探究 'Data Augmentation and Spatial-Spectral Residual Framework for Hyperspectral Image Classification Using Limited Samples' 的科研主题。它们共同构成独一无二的指纹。

引用此