Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading

Hui Mei, Laifei Cheng, Litong Zhang, Yongdong Xu, Zhixin Meng, Chidong Liu

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

The damage evolution and the associated mechanical response of a 2 dimensional C/SiC composite were investigated under monotonic and stepwise incremental loadings and unloadings. The microstructures of the samples were observed by scanning electron microscopy and the damage behavior under mechanical loading was monitored by the acoustic emission technique. The results show that the stress-strain of the composite is linear at stress below 50 MPa. The modulus of the material decreases and the inelastic strain increases with the increase of tension stress, and the composite exhibits a largely non-linear stress-strain behavior up to rupture. The mean fracture strength and failure strain of the composite are 234.26 MPa and 0.6%, respectively. The tensile damage behavior involves: matrix microcracking, transverse bundle cracking, interfacial debonding, fiber fracture, ply delamination and bundle splitting. The damage accumulation eventually results in splitting and pull-outs of the fibers at the crossovers between the bundles, leading to two major rupture modes of the oblique and plain sections.

源语言英语
页(从-至)137-143
页数7
期刊Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society
35
2
出版状态已出版 - 2月 2007

指纹

探究 'Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading' 的科研主题。它们共同构成独一无二的指纹。

引用此