TY - JOUR
T1 - Crystal structure and electrical properties of LnCoO3 (Ln=La, Pr, Tb) perovskite
AU - Shu, Ke
AU - Wang, Chun Hai
AU - Chen, Guang Tao
AU - Ji, Zhi Lin
AU - Yan, Wei Xin
AU - Luo, Fa
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024/11
Y1 - 2024/11
N2 - The rare-earth cobalt-based perovskite oxides LnCoO3 are promising electronic functional materials. The different synthesis conditions and microstructures led to obviously different results in previous investigations. In this study, LnCoO3 (Ln=La, Pr, Tb) with different Ln f-electron configurations [La3+ (4f0), Pr3+ (4f3), and Tb3+ (4f9)] were investigated through careful synthesis controlling. The bond valence analysis, Mulliken population charge analysis and XPS analysis confirm that the Ln and Co ions in LnCoO3 are all in + 3 oxide state (i.e. La3+, Pr3+, Tb3+, and Co3+). The different A-site cations have no significant effect on the [CoO6] octahedra size in LnCoO3 and average Co–O bond lengths are all ~ 1.93 Å. The band structure of LnCoO3 shows similar coupling distribution between Co-3d and O-2p bands, which originates from the similarity of the [CoO6] octahedra. This band structure leads to similar OER and ORR catalytic activities of LnCoO3. The OER overpotential of LnCoO3 is 463–506 mV, which is ~ 100 mV lower than that of commercial Pt/C catalysts, and the ORR half-wave potential is 0.63–0.67 V. The conductivity (σ) of LnCoO3 is 0.11 S cm−1 for LaCoO3, 0.04 S cm−1 for PrCoO3 and 3.91 × 10–4 S cm−1 for TbCoO3 at room temperature. This study reveals the [CoO6] octahedra in LnCoO3 perovskite is the key factor to their band structure and electrocatalytic behavior, providing an important knowledge for the research and development of these materials.
AB - The rare-earth cobalt-based perovskite oxides LnCoO3 are promising electronic functional materials. The different synthesis conditions and microstructures led to obviously different results in previous investigations. In this study, LnCoO3 (Ln=La, Pr, Tb) with different Ln f-electron configurations [La3+ (4f0), Pr3+ (4f3), and Tb3+ (4f9)] were investigated through careful synthesis controlling. The bond valence analysis, Mulliken population charge analysis and XPS analysis confirm that the Ln and Co ions in LnCoO3 are all in + 3 oxide state (i.e. La3+, Pr3+, Tb3+, and Co3+). The different A-site cations have no significant effect on the [CoO6] octahedra size in LnCoO3 and average Co–O bond lengths are all ~ 1.93 Å. The band structure of LnCoO3 shows similar coupling distribution between Co-3d and O-2p bands, which originates from the similarity of the [CoO6] octahedra. This band structure leads to similar OER and ORR catalytic activities of LnCoO3. The OER overpotential of LnCoO3 is 463–506 mV, which is ~ 100 mV lower than that of commercial Pt/C catalysts, and the ORR half-wave potential is 0.63–0.67 V. The conductivity (σ) of LnCoO3 is 0.11 S cm−1 for LaCoO3, 0.04 S cm−1 for PrCoO3 and 3.91 × 10–4 S cm−1 for TbCoO3 at room temperature. This study reveals the [CoO6] octahedra in LnCoO3 perovskite is the key factor to their band structure and electrocatalytic behavior, providing an important knowledge for the research and development of these materials.
UR - http://www.scopus.com/inward/record.url?scp=85209387656&partnerID=8YFLogxK
U2 - 10.1007/s10854-024-13874-w
DO - 10.1007/s10854-024-13874-w
M3 - 文章
AN - SCOPUS:85209387656
SN - 0957-4522
VL - 35
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 33
M1 - 2107
ER -