Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach

Shizhou Zhang, Wenlong Luo, De Cheng, Qingchun Yang, Lingyan Ran, Yinghui Xing, Yanning Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset. The code and datasets are available at https://github.com/FHR-L/VSLA-CLIP.

源语言英语
主期刊名Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
编辑Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
出版商Springer Science and Business Media Deutschland GmbH
270-287
页数18
ISBN(印刷版)9783031733826
DOI
出版状态已出版 - 2025
活动18th European Conference on Computer Vision, ECCV 2024 - Milan, 意大利
期限: 29 9月 20244 10月 2024

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15085 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议18th European Conference on Computer Vision, ECCV 2024
国家/地区意大利
Milan
时期29/09/244/10/24

指纹

探究 'Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach' 的科研主题。它们共同构成独一无二的指纹。

引用此