Coordinated transportation of tethered multi-rotor UAVs based on differential graphical games

Ya Liu, Zhuochen Ma, Fan Zhang, Panfeng Huang, Yingbo Lu, Haitao Chang

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

This paper investigates the stability control of the tethered multi-rotor unmanned aerial vehicles (T-MRUAVs) system in cargo delivery, where precise payload trajectory control is deemed unnecessary, with a focus on enhancing controller simplicity and robustness. To achieve this objective, it is imperative to employ an optimal formation tracking control, ensuring not only the symmetrical positioning of UAVs concerning the payload but also the achievement of distributed optimal solutions. Therefore, a formation tracking control strategy based on differential graphical games is designed to ensure optimized performance metrics and minimized suspended load swing. The designed control framework includes an outer loop and an inner loop control, which respectively achieve formation tracking and attitude stability. In addition to maintaining equilibrium states, each UAV is required to track the desired trajectory. Consequently, the formation tracking control consists of a gravity compensation term at the equilibrium point and a formation tracking control term based on differential graphical games. Then, a PID control strategy is displayed for the inner loop control, and the altitude control adopts feedback linearization. Finally, numerical simulations have validated the effectiveness of the designed algorithm.

源语言英语
文章编号109078
期刊Aerospace Science and Technology
148
DOI
出版状态已出版 - 5月 2024

指纹

探究 'Coordinated transportation of tethered multi-rotor UAVs based on differential graphical games' 的科研主题。它们共同构成独一无二的指纹。

引用此