CONVERSATIONAL SPEECH RECOGNITION BY LEARNING CONVERSATION-LEVEL CHARACTERISTICS

Kun Wei, Yike Zhang, Sining Sun, Lei Xie, Long Ma

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)

摘要

Conversational automatic speech recognition (ASR) is a task to recognize conversational speech including multiple speakers. Unlike sentence-level ASR, conversational ASR can naturally take advantages from specific characteristics of conversation, such as role preference and topical coherence. This paper proposes a conversational ASR model which explicitly learns conversation-level characteristics under the prevalent end-to-end neural framework. The highlights of the proposed model are twofold. First, a latent variational module (LVM) is attached to a conformer-based encoder-decoder ASR backbone to learn role preference and topical coherence. Second, a topic model is specifically adopted to bias the outputs of the decoder to words in the predicted topics. Experiments on two Mandarin conversational ASR tasks show that the proposed model achieves a maximum 12% relative character error rate (CER) reduction.

源语言英语
主期刊名2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
6752-6756
页数5
ISBN(电子版)9781665405409
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022 - Hybrid, 新加坡
期限: 22 5月 202227 5月 2022

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

会议

会议2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022
国家/地区新加坡
Hybrid
时期22/05/2227/05/22

指纹

探究 'CONVERSATIONAL SPEECH RECOGNITION BY LEARNING CONVERSATION-LEVEL CHARACTERISTICS' 的科研主题。它们共同构成独一无二的指纹。

引用此