TY - JOUR
T1 - Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer
AU - Tang, Deyun
AU - Chen, Shuwen
AU - Liu, Xiaolian
AU - He, Wei
AU - Yang, Guangcheng
AU - Liu, Pei Jin
AU - Gozin, Michael
AU - Yan, Qi Long
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - It has been demonstrated in this paper that the tea polyphenols (TP) can easily adhere to the surface of particles through self-polymerization, even these particles are very hydrophobic. In this paper, a method of in-situ polymerization of TP has been used to coat n-Al powder. Then, Bi(IO3)3 crystal is grown on TP as an interfacial layer to obtain core-shell iodine-based MICs (n-Al@TP@Bi(IO3)3). Various characterization techniques are used to investigate the prepared core-shell MICs, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal analysis, mass spectrum (MS), bomb calorimetry and high-speed camera. The results show that the obtained novel MICs are uniformly and densely distributed. The n-Al@TP@Bi(IO3)3 has higher reactivity and heat release than the traditional mechanical mixture, and the initial reaction temperature is reduced by about 30 °C caused by the decomposition-promoting effect of the decomposition product of TP (carbon) on Bi(IO3)3. and the volume reaction heat of n-Al@TP@Bi(IO3)3 (21.246 kJ cm−3) enhances by 11.3%. The results of combustion experiments show that the burning rate of n-Al@TP@Bi(IO3)3 is above 3.4 m s−1, which is 4 times that of Al/ Bi(IO3)3 (0.9 m s−1). Moreover, the combustion efficiency is higher and the agglomeration of the condensed combustion products is greatly decreased. Various other core-shell structured MICs with tunable reactivity could be easily prepared by using similar interfacial binding materials by using our strategy as a guidance.
AB - It has been demonstrated in this paper that the tea polyphenols (TP) can easily adhere to the surface of particles through self-polymerization, even these particles are very hydrophobic. In this paper, a method of in-situ polymerization of TP has been used to coat n-Al powder. Then, Bi(IO3)3 crystal is grown on TP as an interfacial layer to obtain core-shell iodine-based MICs (n-Al@TP@Bi(IO3)3). Various characterization techniques are used to investigate the prepared core-shell MICs, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal analysis, mass spectrum (MS), bomb calorimetry and high-speed camera. The results show that the obtained novel MICs are uniformly and densely distributed. The n-Al@TP@Bi(IO3)3 has higher reactivity and heat release than the traditional mechanical mixture, and the initial reaction temperature is reduced by about 30 °C caused by the decomposition-promoting effect of the decomposition product of TP (carbon) on Bi(IO3)3. and the volume reaction heat of n-Al@TP@Bi(IO3)3 (21.246 kJ cm−3) enhances by 11.3%. The results of combustion experiments show that the burning rate of n-Al@TP@Bi(IO3)3 is above 3.4 m s−1, which is 4 times that of Al/ Bi(IO3)3 (0.9 m s−1). Moreover, the combustion efficiency is higher and the agglomeration of the condensed combustion products is greatly decreased. Various other core-shell structured MICs with tunable reactivity could be easily prepared by using similar interfacial binding materials by using our strategy as a guidance.
KW - Bi(IO)
KW - Coating
KW - Core-shell MICs
KW - In-situ growth
KW - Tea polyphenols
UR - http://www.scopus.com/inward/record.url?scp=85071979319&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.122747
DO - 10.1016/j.cej.2019.122747
M3 - 文章
AN - SCOPUS:85071979319
SN - 1385-8947
VL - 381
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 122747
ER -