摘要
The rational design of micro-mesopores is a hugely challenging for porous metal-based nanomaterials. Here oxalic acid (H2C2O4) as control agent is proposed for the first time to prepare 3D optimal micro-mesoporous NiCo2O4/NiO/Co3O4 nanoflowers (NCNs). Theoretical and experimental analyses demonstrate NCNs-0.1 which are prepared by adding 0.1 g H2C2O4 possess optimal distribution of micro-mesopores. The optimal structure creates abundant active sites and fluent ionic channels. Beneficially, NCNs-0.1 electrodes deliver an enhanced specific capacitance of 1693F g−1 at 1 A g−1 and outstanding cyclic stability (88% capacitance retention after 6000 cycles). Further, the assembled NCNs-0.1//AC capacitor achieves excellent energy densities of 43.02 Wh kg−1 at power densities of 820.29 W kg−1. The current NCNs-0.1 confirms a practicable method to optimize the electrochemical performances of supercapacitors by utilizing H2C2O4 to construct 3D optimal micro-mesoporous nanoflower architectures.
源语言 | 英语 |
---|---|
页(从-至) | 51-60 |
页数 | 10 |
期刊 | Chemical Engineering Journal |
卷 | 368 |
DOI | |
出版状态 | 已出版 - 15 7月 2019 |