Contrastive Learning Meets Homophily: Two Birds with One Stone

Dongxiao He, Jitao Zhao, Rui Guo, Zhiyong Feng, Di Jin, Yuxiao Huang, Zhen Wang, Weixiong Zhang

科研成果: 期刊稿件会议文章同行评审

15 引用 (Scopus)

摘要

Graph Contrastive Learning (GCL) has recently enjoyed great success as an efficient self-supervised representation learning approach. However, the existing methods have focused on designing of contrastive modes and used data augmentation with a rigid and inefficient one-to-one sampling strategy. We adopted node neighborhoods to extend positive samplings and made avoided resorting to data augmentation to create different views. We also considered the homophily problem in Graph Neural Networks (GNNs) between the inter-class node pairs. The key novelty of our method hinged upon analyzing this GNNs problem and integrating the GCL sampling strategy with homophily discrimination, where we solved these two significant problems using one approach. We introduced a new parameterized neighbor sampling component to replace the conventional sub-optimal samplings. By keeping and updating the neighbor sets, both the positive sampling of GCL and the message passing of GNNs can be optimized. Moreover, we theoretically proved that the new method provided a lower bound of mutual information for unsupervised semantic learning, and it can also keep the lower bound with downstream tasks. In essence, our method is a new self-supervised approach, which we refer to as group discrimination, and it can make the downstream fine-tuning efficient. Our extensive empirical results demonstrate that the new method can significantly outperform the existing GCL methods because the former can solve the homophily problem in a self-supervised way with the new group discrimination method used.

源语言英语
页(从-至)12775-12789
页数15
期刊Proceedings of Machine Learning Research
202
出版状态已出版 - 2023
活动40th International Conference on Machine Learning, ICML 2023 - Honolulu, 美国
期限: 23 7月 202329 7月 2023

指纹

探究 'Contrastive Learning Meets Homophily: Two Birds with One Stone' 的科研主题。它们共同构成独一无二的指纹。

引用此