TY - JOUR
T1 - Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality
AU - Sanaei, Anvar
AU - Ali, Arshad
AU - Yuan, Zuoqiang
AU - Liu, Shufang
AU - Lin, Fei
AU - Fang, Shuai
AU - Ye, Ji
AU - Hao, Zhanqing
AU - Loreau, Michel
AU - Bai, Edith
AU - Wang, Xugao
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/25
Y1 - 2021/2/25
N2 - High species diversity is generally thought to be a requirement for sustaining forest multifunctionality. However, the degree to which the relationship between species-, structural-, and trait-diversity of forests and multifunctionality depend on the context (such as stand age or abiotic conditions) is not well studied. Here, we hypothesized that context-dependency of tree species diversity, functional trait composition and stand structural attributes promote temperate forest multifunctionality including above- and below-ground multiple and single functions. To do so, we used repeated forest inventory data, from temperate mixed forests of northeast China, to quantify two above-ground (i.e. coarse woody productivity and wild edible plant biomass), five below-ground (i.e. soil organic carbon, total soil nitrogen, potassium, phosphorus and sulfur) functions, tree species diversity, individual tree size variation (CVDBH) and functional trait composition of specific leaf area (CWMSLA) as well as stand age and abiotic conditions. We found that tree species diversity increased forest multifunctionality and most of the single functions. Below-ground single and multifunctionality were better explained by tree species diversity. In contrast, above-ground single and multifunctionality were better explained by CVDBH. However, CWMSLA was also an additional important driver for maintaining above- and below-ground forest multifunctionality through opposing plant functional strategies. Stand age markedly reduced forest multifunctionality, tree species diversity and CWMSLA but substantially increased CVDBH. Below-ground forest multifunctionality and tree species diversity decreased while above-ground forest multifunctionality increased on steep slopes. These results highlight that context-dependency of forest diversity attributes might regulate forest multifunctionality but may not have a consistent effect on above-ground and below-ground forest multifunctionality due to the fact that those functions were driven by varied functional strategies of different plant species. We argue that maximizing forest complexity could act as a viable strategy to maximizing forest multifunctionality, while also promoting biodiversity conservation to mitigate climate change effects.
AB - High species diversity is generally thought to be a requirement for sustaining forest multifunctionality. However, the degree to which the relationship between species-, structural-, and trait-diversity of forests and multifunctionality depend on the context (such as stand age or abiotic conditions) is not well studied. Here, we hypothesized that context-dependency of tree species diversity, functional trait composition and stand structural attributes promote temperate forest multifunctionality including above- and below-ground multiple and single functions. To do so, we used repeated forest inventory data, from temperate mixed forests of northeast China, to quantify two above-ground (i.e. coarse woody productivity and wild edible plant biomass), five below-ground (i.e. soil organic carbon, total soil nitrogen, potassium, phosphorus and sulfur) functions, tree species diversity, individual tree size variation (CVDBH) and functional trait composition of specific leaf area (CWMSLA) as well as stand age and abiotic conditions. We found that tree species diversity increased forest multifunctionality and most of the single functions. Below-ground single and multifunctionality were better explained by tree species diversity. In contrast, above-ground single and multifunctionality were better explained by CVDBH. However, CWMSLA was also an additional important driver for maintaining above- and below-ground forest multifunctionality through opposing plant functional strategies. Stand age markedly reduced forest multifunctionality, tree species diversity and CWMSLA but substantially increased CVDBH. Below-ground forest multifunctionality and tree species diversity decreased while above-ground forest multifunctionality increased on steep slopes. These results highlight that context-dependency of forest diversity attributes might regulate forest multifunctionality but may not have a consistent effect on above-ground and below-ground forest multifunctionality due to the fact that those functions were driven by varied functional strategies of different plant species. We argue that maximizing forest complexity could act as a viable strategy to maximizing forest multifunctionality, while also promoting biodiversity conservation to mitigate climate change effects.
KW - Biodiversity-forest functioning
KW - Complementarity effect
KW - Functional traits
KW - Mass ratio
KW - Soil nutrients
KW - Stand variation
UR - http://www.scopus.com/inward/record.url?scp=85096499577&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.143724
DO - 10.1016/j.scitotenv.2020.143724
M3 - 文章
C2 - 33221010
AN - SCOPUS:85096499577
SN - 0048-9697
VL - 757
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 143724
ER -