TY - JOUR
T1 - Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms
AU - Li, Chen
AU - Zhao, Rong
AU - Yang, Hui
AU - Ren, Li
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
AB - The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
KW - bone disease bone-on-a-chip platform
KW - bone marrow
KW - cell culturing
KW - hypoxic microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85156151457&partnerID=8YFLogxK
U2 - 10.3390/ijms24086999
DO - 10.3390/ijms24086999
M3 - 文献综述
AN - SCOPUS:85156151457
SN - 1661-6596
VL - 24
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 8
M1 - 6999
ER -