Conflict data fusion in a multi-agent system premised on the base basic probability assignment and evidence distance

Jingyu Liu, Yongchuan Tang

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

The multi-agent information fusion (MAIF) system can alleviate the limitations of a single expert system in dealing with complex situations, as it allows multiple agents to cooperate in order to solve problems in complex environments. Dempster–Shafer (D-S) evidence theory has important applications in multi-source data fusion, pattern recognition, and other fields. However, the traditional Dempster combination rules may produce counterintuitive results when dealing with highly conflicting data. A conflict data fusion method in a multi-agent system based on the base basic probability assignment (bBPA) and evidence distance is proposed in this paper. Firstly, the new bBPA and reconstructed BPA are used to construct the initial belief degree of each agent. Then, the information volume of each evidence group is obtained by calculating the evidence distance so as to modify the reliability and obtain more reasonable evidence. Lastly, the final evidence is fused with the Dempster combination rule to obtain the result. Numerical examples show the effectiveness and availability of the proposed method, which improves the accuracy of the identification process of the MAIF system.

源语言英语
文章编号820
期刊Entropy
23
7
DOI
出版状态已出版 - 7月 2021
已对外发布

指纹

探究 'Conflict data fusion in a multi-agent system premised on the base basic probability assignment and evidence distance' 的科研主题。它们共同构成独一无二的指纹。

引用此