CONDA: Condensed Deep Association Learning for Co-salient Object Detection

Long Li, Nian Liu, Dingwen Zhang, Zhongyu Li, Salman Khan, Rao Anwer, Hisham Cholakkal, Junwei Han, Fahad Shahbaz Khan

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Inter-image association modeling is crucial for co-salient object detection. Despite satisfactory performance, previous methods still have limitations on sufficient inter-image association modeling. Because most of them focus on image feature optimization under the guidance of heuristically calculated raw inter-image associations. They directly rely on raw associations which are not reliable in complex scenarios, and their image feature optimization approach is not explicit for inter-image association modeling. To alleviate these limitations, this paper proposes a deep association learning strategy that deploys deep networks on raw associations to explicitly transform them into deep association features. Specifically, we first create hyperassociations to collect dense pixel-pair-wise raw associations and then deploys deep aggregation networks on them. We design a progressive association generation module for this purpose with additional enhancement of the hyperassociation calculation. More importantly, we propose a correspondence-induced association condensation module that introduces a pretext task, i.e. semantic correspondence estimation, to condense the hyperassociations for computational burden reduction and noise elimination. We also design an object-aware cycle consistency loss for high-quality correspondence estimations. Experimental results in three benchmark datasets demonstrate the remarkable effectiveness of our proposed method with various training settings. The code is available at: https://github.com/dragonlee258079/CONDA.

源语言英语
主期刊名Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
编辑Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
出版商Springer Science and Business Media Deutschland GmbH
287-303
页数17
ISBN(印刷版)9783031729720
DOI
出版状态已出版 - 2025
活动18th European Conference on Computer Vision, ECCV 2024 - Milan, 意大利
期限: 29 9月 20244 10月 2024

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15108 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议18th European Conference on Computer Vision, ECCV 2024
国家/地区意大利
Milan
时期29/09/244/10/24

指纹

探究 'CONDA: Condensed Deep Association Learning for Co-salient Object Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此