TY - JOUR
T1 - Composition design of reduced activation ferritic/martensitic (RAFM) steels based on cluster structure model
AU - Shi, Yao
AU - Wang, Qing
AU - Li, Qun
AU - Dong, Chuang
N1 - Publisher Copyright:
© Copyright.
PY - 2014/8/25
Y1 - 2014/8/25
N2 - The composition characteristics of reduced activation ferritic/martensitic (RAFM) steels were investigated using a cluster-plus-glue-atom model. The basic cluster formula [Cr-Fe14](Cr0.5Fe0.5) was determined, where the cluster part [Cr-Fe14] is a rhombic dodecahedron centered by Cr and surrounded by 14 Fe atoms. According to the principle related with self- consistent magnification of cluster formula and similar element substitution, two multi-component alloys were designed by adding V, Mn, Mo, W, Nb and C into [Cr-Fe14](Cr0.5Fe0.5) i.e.[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1. Alloy rods with a diameter of 6 mm were prepared by copper mould suction casting method, then normalized at 1323 K for 0.5 h and tempered at 1023 K for 1 h, both followed by water-quenching. The experimental results revealed that the substitutional solid solution alloys without C exhibit a monolithic ferrite microstructure and that of the other serial alloys with C varies with alloying elements and their contents. The microhardness (HV) of alloys changes with microstructures, and furthermore, while the HV of substitutional solid solution alloys decreases monotonously with the increase of the valence electron concentration per volume VEC/Ra3.
AB - The composition characteristics of reduced activation ferritic/martensitic (RAFM) steels were investigated using a cluster-plus-glue-atom model. The basic cluster formula [Cr-Fe14](Cr0.5Fe0.5) was determined, where the cluster part [Cr-Fe14] is a rhombic dodecahedron centered by Cr and surrounded by 14 Fe atoms. According to the principle related with self- consistent magnification of cluster formula and similar element substitution, two multi-component alloys were designed by adding V, Mn, Mo, W, Nb and C into [Cr-Fe14](Cr0.5Fe0.5) i.e.[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1. Alloy rods with a diameter of 6 mm were prepared by copper mould suction casting method, then normalized at 1323 K for 0.5 h and tempered at 1023 K for 1 h, both followed by water-quenching. The experimental results revealed that the substitutional solid solution alloys without C exhibit a monolithic ferrite microstructure and that of the other serial alloys with C varies with alloying elements and their contents. The microhardness (HV) of alloys changes with microstructures, and furthermore, while the HV of substitutional solid solution alloys decreases monotonously with the increase of the valence electron concentration per volume VEC/Ra3.
KW - Cluster
KW - Composition design
KW - Fe-based alloys
KW - Metallic materials
KW - Reduced activation ferritic/martensitic steels
KW - structure model
UR - http://www.scopus.com/inward/record.url?scp=84907500552&partnerID=8YFLogxK
M3 - 文章
AN - SCOPUS:84907500552
SN - 1005-3093
VL - 28
SP - 594
EP - 600
JO - Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research
JF - Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research
IS - 8
ER -