TY - JOUR
T1 - Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating
AU - Bai, Yang
AU - Zhang, Boyuan
AU - Fei, Guiqiang
AU - Ma, Zhonglei
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12/15
Y1 - 2023/12/15
N2 - Although the electromagnetic interference (EMI) shielding materials have attracted much attention in recent years, it is still a big challenge to develop EMI materials with stretchable, self-healing and recyclable property, realizing reliable usage and avoiding electronic waste. In this paper, we have developed a multifunctional elastomeric adhesive called MFEA, which comprises polydimethylsiloxane, dimethylacetohydrazide/4,4-methylene bis(phenyl isocyanate), and catechol. MFEA exhibits outstanding mechanical performance(3.75 MPa), strong adhesion(1 MPa), self-healing capabilities(91 %), and recyclability. By leveraging its adhesive properties, we can combine MFEA with silver nanowires. The composite MFEA/AgNWs film not only exhibits outstanding performance, including stretchability, self-healing, adhesion, and recyclability, but can also be used to manufacture EMI shielding films with an shielding strength of up to 53.6 dB. Additionally, the composite film exhibits Joule heating behavior, rapidly heating to over 50 ℃ under a 1.5 V and maintaining stability for an extended duration. Moreover, MFEA can be used to adhere to other commercial EMI shielding films to achieve desired functionalities using conventional methods. This approach provides a universal, convenient, and rapid strategy for preparing flexible electronic materials with various functionalities.
AB - Although the electromagnetic interference (EMI) shielding materials have attracted much attention in recent years, it is still a big challenge to develop EMI materials with stretchable, self-healing and recyclable property, realizing reliable usage and avoiding electronic waste. In this paper, we have developed a multifunctional elastomeric adhesive called MFEA, which comprises polydimethylsiloxane, dimethylacetohydrazide/4,4-methylene bis(phenyl isocyanate), and catechol. MFEA exhibits outstanding mechanical performance(3.75 MPa), strong adhesion(1 MPa), self-healing capabilities(91 %), and recyclability. By leveraging its adhesive properties, we can combine MFEA with silver nanowires. The composite MFEA/AgNWs film not only exhibits outstanding performance, including stretchability, self-healing, adhesion, and recyclability, but can also be used to manufacture EMI shielding films with an shielding strength of up to 53.6 dB. Additionally, the composite film exhibits Joule heating behavior, rapidly heating to over 50 ℃ under a 1.5 V and maintaining stability for an extended duration. Moreover, MFEA can be used to adhere to other commercial EMI shielding films to achieve desired functionalities using conventional methods. This approach provides a universal, convenient, and rapid strategy for preparing flexible electronic materials with various functionalities.
KW - Adhesion
KW - EMI shielding
KW - Recyclability
KW - Self-healing
UR - http://www.scopus.com/inward/record.url?scp=85177084468&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.147382
DO - 10.1016/j.cej.2023.147382
M3 - 文章
AN - SCOPUS:85177084468
SN - 1385-8947
VL - 478
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 147382
ER -