TY - JOUR
T1 - Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials
AU - Yan, Qi Long
AU - Xiao-Jiang, Li
AU - La-Ying, Zhang
AU - Ji-Zhen, Li
AU - Hong-Li, Li
AU - Zi-Ru, Liu
PY - 2008/12/30
Y1 - 2008/12/30
N2 - The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size = 13.6 μm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C2), carbon black (C.B.), aluminum oxide (Al2O3), cupric 2,4-dihydroxy-benzoate (β-Cu), cupric adipate (AD-Cu) and lead phthalate (φ-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, φ-Pb, β-Cu, AD-Cu and Al2O3 are sensitive, and with PEG, N-100, C2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility.
AB - The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size = 13.6 μm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C2), carbon black (C.B.), aluminum oxide (Al2O3), cupric 2,4-dihydroxy-benzoate (β-Cu), cupric adipate (AD-Cu) and lead phthalate (φ-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, φ-Pb, β-Cu, AD-Cu and Al2O3 are sensitive, and with PEG, N-100, C2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility.
KW - Compatibility
KW - Energetic components
KW - Inert materials
KW - PDSC
KW - TNAD
UR - http://www.scopus.com/inward/record.url?scp=54549086906&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2008.03.027
DO - 10.1016/j.jhazmat.2008.03.027
M3 - 文章
C2 - 18434010
AN - SCOPUS:54549086906
SN - 0304-3894
VL - 160
SP - 529
EP - 534
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
IS - 2-3
ER -