Colar: Effective and Efficient Online Action Detection by Consulting Exemplars

科研成果: 书/报告/会议事项章节会议稿件同行评审

46 引用 (Scopus)

摘要

Online action detection has attracted increasing research interests in recent years. Current works model historical dependencies and anticipate the future to perceive the action evolution within a video segment and improve the detection accuracy. However, the existing paradigm ignores category-level modeling and does not pay sufficient attention to efficiency. Considering a category, its representative frames exhibit various characteristics. Thus, the category-level modeling can provide complimentary guidance to the temporal dependencies modeling. This paper develops an effective exemplar-consultation mechanism that first measures the similarity between a frame and exemplary frames, and then aggregates exemplary features based on the similarity weights. This is also an efficient mechanism, as both similarity measurement and feature aggregation require limited computations. Based on the exemplar-consultation mechanism, the long-term dependencies can be captured by regarding historical frames as exemplars, while the category-level modeling can be achieved by regarding representative frames from a category as exemplars. Due to the complementarity from the categorylevel modeling, our method employs a lightweight architecture but achieves new high performance on three benchmarks. In addition, using a spatio-temporal network to tackle video frames, our method makes a good trade-off between effectiveness and efficiency. Code is available at https://github.com/VividLe/Online-Action-Detection.

源语言英语
主期刊名Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版商IEEE Computer Society
3150-3159
页数10
ISBN(电子版)9781665469463
DOI
出版状态已出版 - 2022
活动2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, 美国
期限: 19 6月 202224 6月 2022

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2022-June
ISSN(印刷版)1063-6919

会议

会议2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
国家/地区美国
New Orleans
时期19/06/2224/06/22

指纹

探究 'Colar: Effective and Efficient Online Action Detection by Consulting Exemplars' 的科研主题。它们共同构成独一无二的指纹。

引用此