TY - GEN
T1 - Colar
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
AU - Yang, Le
AU - Han, Junwei
AU - Zhang, Dingwen
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Online action detection has attracted increasing research interests in recent years. Current works model historical dependencies and anticipate the future to perceive the action evolution within a video segment and improve the detection accuracy. However, the existing paradigm ignores category-level modeling and does not pay sufficient attention to efficiency. Considering a category, its representative frames exhibit various characteristics. Thus, the category-level modeling can provide complimentary guidance to the temporal dependencies modeling. This paper develops an effective exemplar-consultation mechanism that first measures the similarity between a frame and exemplary frames, and then aggregates exemplary features based on the similarity weights. This is also an efficient mechanism, as both similarity measurement and feature aggregation require limited computations. Based on the exemplar-consultation mechanism, the long-term dependencies can be captured by regarding historical frames as exemplars, while the category-level modeling can be achieved by regarding representative frames from a category as exemplars. Due to the complementarity from the categorylevel modeling, our method employs a lightweight architecture but achieves new high performance on three benchmarks. In addition, using a spatio-temporal network to tackle video frames, our method makes a good trade-off between effectiveness and efficiency. Code is available at https://github.com/VividLe/Online-Action-Detection.
AB - Online action detection has attracted increasing research interests in recent years. Current works model historical dependencies and anticipate the future to perceive the action evolution within a video segment and improve the detection accuracy. However, the existing paradigm ignores category-level modeling and does not pay sufficient attention to efficiency. Considering a category, its representative frames exhibit various characteristics. Thus, the category-level modeling can provide complimentary guidance to the temporal dependencies modeling. This paper develops an effective exemplar-consultation mechanism that first measures the similarity between a frame and exemplary frames, and then aggregates exemplary features based on the similarity weights. This is also an efficient mechanism, as both similarity measurement and feature aggregation require limited computations. Based on the exemplar-consultation mechanism, the long-term dependencies can be captured by regarding historical frames as exemplars, while the category-level modeling can be achieved by regarding representative frames from a category as exemplars. Due to the complementarity from the categorylevel modeling, our method employs a lightweight architecture but achieves new high performance on three benchmarks. In addition, using a spatio-temporal network to tackle video frames, our method makes a good trade-off between effectiveness and efficiency. Code is available at https://github.com/VividLe/Online-Action-Detection.
KW - Behavior analysis
KW - Video analysis and understanding
UR - http://www.scopus.com/inward/record.url?scp=85131029501&partnerID=8YFLogxK
U2 - 10.1109/CVPR52688.2022.00316
DO - 10.1109/CVPR52688.2022.00316
M3 - 会议稿件
AN - SCOPUS:85131029501
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 3150
EP - 3159
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
Y2 - 19 June 2022 through 24 June 2022
ER -