TY - GEN
T1 - Cluster sparsity field for hyperspectral imagery denoising
AU - Zhang, Lei
AU - Wei, Wei
AU - Zhang, Yanning
AU - Shen, Chunhua
AU - Van Den Hengel, Anton
AU - Shi, Qinfeng
N1 - Publisher Copyright:
© Springer International Publishing AG 2016.
PY - 2016
Y1 - 2016
N2 - Hyperspectral images (HSIs) can facilitate extensive computer vision applications with the extra spectra information. However, HSIs often suffer from noise corruption during the practical imaging procedure. Though it has been testified that intrinsic correlation across spectrum and spatial similarity (i.e., local similarity in locally smooth areas and non-local similarity among recurrent patterns) in HSIs are useful for denoising, how to fully exploit them together to obtain a good denoising model is seldom studied. In this study, we present an effective cluster sparsity field based HSIs denoising (CSFHD) method by exploiting those two characteristics simultaneously. Firstly, a novel Markov random field prior, named cluster sparsity field (CSF), is proposed for the sparse representation of an HSI. By grouping pixels into several clusters with spectral similarity, the CSF prior defines both a structured sparsity potential and a graph structure potential on each cluster to model the correlation across spectrum and spatial similarity in the HSI, respectively. Then, the CSF prior learning and the image denoising are unified into a variational framework for optimization, where all unknown variables are learned directly from the noisy observation. This guarantees to learn a data-dependent image model, thus producing satisfying denoising results. Plenty experiments on denoising synthetic and real noisy HSIs validated that the proposed CSFHD outperforms several state-of-the-art methods.
AB - Hyperspectral images (HSIs) can facilitate extensive computer vision applications with the extra spectra information. However, HSIs often suffer from noise corruption during the practical imaging procedure. Though it has been testified that intrinsic correlation across spectrum and spatial similarity (i.e., local similarity in locally smooth areas and non-local similarity among recurrent patterns) in HSIs are useful for denoising, how to fully exploit them together to obtain a good denoising model is seldom studied. In this study, we present an effective cluster sparsity field based HSIs denoising (CSFHD) method by exploiting those two characteristics simultaneously. Firstly, a novel Markov random field prior, named cluster sparsity field (CSF), is proposed for the sparse representation of an HSI. By grouping pixels into several clusters with spectral similarity, the CSF prior defines both a structured sparsity potential and a graph structure potential on each cluster to model the correlation across spectrum and spatial similarity in the HSI, respectively. Then, the CSF prior learning and the image denoising are unified into a variational framework for optimization, where all unknown variables are learned directly from the noisy observation. This guarantees to learn a data-dependent image model, thus producing satisfying denoising results. Plenty experiments on denoising synthetic and real noisy HSIs validated that the proposed CSFHD outperforms several state-of-the-art methods.
KW - Denoising
KW - Hyperspectral
KW - Spatial similarity
KW - Structured sparsity
UR - http://www.scopus.com/inward/record.url?scp=84990061998&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-46454-1_38
DO - 10.1007/978-3-319-46454-1_38
M3 - 会议稿件
AN - SCOPUS:84990061998
SN - 9783319464534
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 631
EP - 647
BT - Computer Vision - 14th European Conference, ECCV 2016, Proceedings
A2 - Leibe, Bastian
A2 - Matas, Jiri
A2 - Sebe, Nicu
A2 - Welling, Max
PB - Springer Verlag
T2 - 14th European Conference on Computer Vision, ECCV 2016
Y2 - 8 October 2016 through 16 October 2016
ER -