TY - JOUR
T1 - CH4+C2H5OH+Ar 体系热解的气相动力学研究
AU - Ma, Yongjie
AU - Liu, Yongsheng
AU - Guan, Kang
AU - Zeng, Qingfeng
N1 - Publisher Copyright:
© 2024 Science Press. All rights reserved.
PY - 2024/11
Y1 - 2024/11
N2 - Preparation of carbon-carbon composites through the chemical vapor infiltration (CVI) process, utilizing CH4 and C2H5OH as precursors, can effectively improve the deposition rate and produce highly structured pyrolytic carbon. Understanding the reaction mechanism is essential for computational fluid dynamics (CFD) studies. Chemical reaction mechanisms typically involve numerous free radicals and reactions, and manually constructing such mechanisms based on experimental data alone risks omitting critical species and reactions. Hence, in this research, a thorough gas-phase pyrolysis kinetic mechanism for the CH4+C2H5OH+Ar system was developed using the reaction mechanism generator (RMG). This mechanism included 31 core species and 214 core reactions, accurately predicting the evolution of major species' formation and consumption. The simulation results were consistent with experimental observations. Through a detailed analysis of the kinetics and sensitivity of reactants and critical products, reactions influencing the formation and consumption of crucial species were identified. Reaction pathway analysis further clarified relationships among different species, identifying core species within the mechanism. By simplifying the detailed mechanism based on sensitivity and rection pathway analysis at 1373 K and 10 kPa, a gas-phase kinetic mechanism was derived, composed of 18 species and 44 reactions. This streamlined model substantially boosts computational efficiency while retaining key species, providing a more convenient foundation for further CFD studies and applications.
AB - Preparation of carbon-carbon composites through the chemical vapor infiltration (CVI) process, utilizing CH4 and C2H5OH as precursors, can effectively improve the deposition rate and produce highly structured pyrolytic carbon. Understanding the reaction mechanism is essential for computational fluid dynamics (CFD) studies. Chemical reaction mechanisms typically involve numerous free radicals and reactions, and manually constructing such mechanisms based on experimental data alone risks omitting critical species and reactions. Hence, in this research, a thorough gas-phase pyrolysis kinetic mechanism for the CH4+C2H5OH+Ar system was developed using the reaction mechanism generator (RMG). This mechanism included 31 core species and 214 core reactions, accurately predicting the evolution of major species' formation and consumption. The simulation results were consistent with experimental observations. Through a detailed analysis of the kinetics and sensitivity of reactants and critical products, reactions influencing the formation and consumption of crucial species were identified. Reaction pathway analysis further clarified relationships among different species, identifying core species within the mechanism. By simplifying the detailed mechanism based on sensitivity and rection pathway analysis at 1373 K and 10 kPa, a gas-phase kinetic mechanism was derived, composed of 18 species and 44 reactions. This streamlined model substantially boosts computational efficiency while retaining key species, providing a more convenient foundation for further CFD studies and applications.
KW - carbon/carbon composite
KW - gas-phase dynamic
KW - mechanism analysis
KW - mechanism simplification
UR - http://www.scopus.com/inward/record.url?scp=85209097091&partnerID=8YFLogxK
U2 - 10.15541/jim20240158
DO - 10.15541/jim20240158
M3 - 文章
AN - SCOPUS:85209097091
SN - 1000-324X
VL - 39
SP - 1235
EP - 1244
JO - Wuji Cailiao Xuebao/Journal of Inorganic Materials
JF - Wuji Cailiao Xuebao/Journal of Inorganic Materials
IS - 11
ER -