Cardinality-consensus-based PHD filtering for distributed multitarget tracking

Tiancheng Li, Franz Hlawatsch, Petar M. Djuric

科研成果: 期刊稿件文章同行评审

49 引用 (Scopus)

摘要

We present a distributed probability hypothesis density (PHD) filter for multitarget tracking in decentralized sensor networks with severely constrained communication. The proposed 'cardinality consensus' (CC) scheme uses communication only to estimate the number of targets (or, the cardinality of the target set) in a distributed way. The CC scheme allows for different implementations - e.g., using Gaussian mixtures or particles - of the local PHD filters. Although the CC scheme requires only a small amount of communication and of fusion computation, our simulation results demonstrate large performance gains compared with noncooperative local PHD filters.

源语言英语
文章编号8510846
页(从-至)49-53
页数5
期刊IEEE Signal Processing Letters
26
1
DOI
出版状态已出版 - 1月 2019
已对外发布

指纹

探究 'Cardinality-consensus-based PHD filtering for distributed multitarget tracking' 的科研主题。它们共同构成独一无二的指纹。

引用此