Bounds for the eccentricity spectral radius of join digraphs with a fixed dichromatic number

Xiuwen Yang, Hajo Broersma, Ligong Wang

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

The eccentricity matrix ɛ(G) of a strongly connected digraph G is defined as ɛ(G)ij=d(vi,vj),ifd(vi,vj)=min{e+(vi),e(vj)},0,otherwise.,where e+(vi)=max{d(vi,vj)∣vj∈V(G)} is the out-eccentricity of the vertex vi of G, and e(vj)=max{d(vi,vj)∣vi∈V(G)} is the in-eccentricity of the vertex vj of G. The eigenvalue of ɛ(G) with the largest modulus is called the eccentricity spectral radius of G. In this paper, we obtain lower bounds for the eccentricity spectral radius among all join digraphs with a fixed dichromatic number. We also give upper bounds for the eccentricity spectral radius of some special join digraphs with a fixed dichromatic number.

源语言英语
页(从-至)241-257
页数17
期刊Discrete Applied Mathematics
357
DOI
出版状态已出版 - 15 11月 2024

指纹

探究 'Bounds for the eccentricity spectral radius of join digraphs with a fixed dichromatic number' 的科研主题。它们共同构成独一无二的指纹。

引用此