Bio-Inspired Audiovisual Multi-Representation Integration via Self-Supervised Learning

Zhaojian Li, Bin Zhao, Yuan Yuan

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Audiovisual self-supervised representation learning has made significant strides in various audiovisual tasks. Existing methods mostly focus on single representation modeling between audio and visual modalities, ignoring the complex correspondence between them, resulting in the inability to execute cross-modal understanding in a more natural audiovisual scene. Several biological studies have shown that human learning is influenced by multi-layered synchronization of perception. To this end, inspired by biology, we argue to exploit the naturally existing relationships in audio and visual modalities to learn audiovisual representations under multilayer perceptual integration. Firstly, we introduce an audiovisual multi-representation pretext task that integrates semantic consistency, temporal alignment, and spatial correspondence. Secondly, we propose a self-supervised audiovisual multi-representation learning approach, which simultaneously learns the perceptual relationship between visual and audio modalities at semantic, temporal, and spatial levels. To establish fine-grained correspondence between visual objects and sounds, an audiovisual object detection module is proposed, which detects potential sounding objects by combining unsupervised knowledge at multiple levels. In addition, we propose a modality-wise loss and a task-wise loss to learn a subspace-orthogonal representation space that makes representation relations more discriminative. Finally, experimental results demonstrate that collectively understanding the semantic, temporal, and spatial correspondence between audiovisual modalities enables the model to perform better on downstream tasks such as sound separation, sound spatialization, and audiovisual segmentation.

源语言英语
主期刊名MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
3755-3764
页数10
ISBN(电子版)9798400701085
DOI
出版状态已出版 - 26 10月 2023
活动31st ACM International Conference on Multimedia, MM 2023 - Ottawa, 加拿大
期限: 29 10月 20233 11月 2023

出版系列

姓名MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

会议

会议31st ACM International Conference on Multimedia, MM 2023
国家/地区加拿大
Ottawa
时期29/10/233/11/23

指纹

探究 'Bio-Inspired Audiovisual Multi-Representation Integration via Self-Supervised Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此