Beyond Context: Exploring Semantic Similarity for Tiny Face Detection

Yue Xi, Jiangbin Zheng, Xiangjian He, Wenjing Jia, Hanhui Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Tiny face detection aims to find faces with high degrees of variability in scale, resolution and occlusion in cluttered scenes. Due to the very little information available on tiny faces, it is not sufficient to detect them merely based on the information presented inside the tiny bounding boxes or their context. In this paper, we propose to exploit the semantic similarity among all predicted targets in each image to boost current face detectors. To this end, we present a novel framework to model semantic similarity as pairwise constraints within the metric learning scheme, and then refine our predictions with the semantic similarity by utilizing the graph cut techniques. Experiments conducted on three widely-used benchmark datasets have demonstrated the improvement over the-state-of-the-arts gained by applying this idea.

源语言英语
主期刊名2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
出版商IEEE Computer Society
1907-1911
页数5
ISBN(电子版)9781479970612
DOI
出版状态已出版 - 29 8月 2018
活动25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, 希腊
期限: 7 10月 201810 10月 2018

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议25th IEEE International Conference on Image Processing, ICIP 2018
国家/地区希腊
Athens
时期7/10/1810/10/18

指纹

探究 'Beyond Context: Exploring Semantic Similarity for Tiny Face Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此