Balanced clustering with least square regression

Hanyang Liu, Junwei Han, Feiping Nie, Xuelong Li

科研成果: 会议稿件论文同行评审

46 引用 (Scopus)

摘要

Clustering is a fundamental research topic in data mining. A balanced clustering result is often required in a variety of applications. Many existing clustering algorithms have good clustering performances, yet fail in producing balanced clusters. In this paper, we propose a novel and simple method for clustering, referred to as the Balanced Clustering with Least Square regression (BCLS), to minimize the least square linear regression, with a balance constraint to regularize the clustering model. In BCLS, the linear regression is applied to estimate the class-specific hyperplanes that partition each class of data from others, thus guiding the clustering of the data points into different clusters. A balance constraint is utilized to regularize the clustering, by minimizing which can help produce balanced clusters. In addition, we apply the method of augmented Lagrange multipliers (ALM) to help optimize the objective model. The experiments on seven real-world benchmarks demonstrate that our approach not only produces good clustering performance but also guarantees a balanced clustering result.

源语言英语
2231-2237
页数7
出版状态已出版 - 2017
活动31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, 美国
期限: 4 2月 201710 2月 2017

会议

会议31st AAAI Conference on Artificial Intelligence, AAAI 2017
国家/地区美国
San Francisco
时期4/02/1710/02/17

指纹

探究 'Balanced clustering with least square regression' 的科研主题。它们共同构成独一无二的指纹。

引用此