Assessment of improved delayed detached eddy simulation in predicting unsteady flows and sound around a circular cylinder

Bo Luo, Wuli Chu, Song Yan, Zhengjing Shen, Haoguang Zhang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Unsteady flows in the field of engineering are usually calculated by the Unsteady Reynolds-Averaged Navier-Stokes (URANS) owing to the low requirements for computational efforts. However, the numerical resolution of URANS, especially in predicting the unsteady wake flows and sound, is still questionable. In this work, unsteady flow and sound calculations of a circular cylinder are carried out using Improved Delayed Detached Eddy Simulation (IDDES) and the Ffowcs Williams-Hawkings (FW-H) analogy. The predicted results of this calculation are compared with those from the previous studies in the literature in terms of the mean and RMS of the velocity components as well as the sound pressure. The results show that IDDES retains much of the numerical accuracy of the Large Eddy Simulation (LES) approach in predicting unsteady flows and noise while requiring a reduced computational resources in comparison to LES. It is believed that the IDDES can be applied to calculate the complex unsteady flows and flow generated sound with reasonable accuracy in engineering field, which can be used as a promising method for scale-resolving simulations to avoid the expensive computational requirements of LES.

源语言英语
文章编号2150384
期刊Modern Physics Letters B
35
23
DOI
出版状态已出版 - 20 8月 2021

指纹

探究 'Assessment of improved delayed detached eddy simulation in predicting unsteady flows and sound around a circular cylinder' 的科研主题。它们共同构成独一无二的指纹。

引用此