TY - JOUR
T1 - Assessing the thermal stability of laser powder bed fused AlSi10Mg by short-period thermal exposure
AU - Wan, Jie
AU - Geng, Huarui
AU - Chen, Biao
AU - Shen, Jianghua
AU - Kondoh, Katsuyoshi
AU - Li, Jinshan
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - Laser powder bed fused (LPBFed) AlSi10Mg is recognised for its superior mechanical properties. However, its thermal stability has never been justified. Herein, we exposed as-built AlSi10Mg to different temperatures (200–500°C) for only 3 min to evaluate its thermal stability. Results showed that LPBFed AlSi10Mg had relatively low thermal stability. Only 3 min of thermal exposure at 200°C would deteriorate its tensile strength dramatically. Microstructural analysis revealed that with increasing thermal input, as-built AlSi10Mg exhibited a microstructural evolution similar to annealing of cold-worked metals, namely recovery, recrystallisation followed by grain-growth. The excessive energy stored in as-built microstructure due to fast cooling during LPBF was deduced as the driving force for this phenomenon. Therefore, such microstructural change was at the expense of dislocations stored in the as-built material, which in turn caused deterioration in tensile strength. The present findings may provide guidance for the application of LPBFed AlSi10Mg.
AB - Laser powder bed fused (LPBFed) AlSi10Mg is recognised for its superior mechanical properties. However, its thermal stability has never been justified. Herein, we exposed as-built AlSi10Mg to different temperatures (200–500°C) for only 3 min to evaluate its thermal stability. Results showed that LPBFed AlSi10Mg had relatively low thermal stability. Only 3 min of thermal exposure at 200°C would deteriorate its tensile strength dramatically. Microstructural analysis revealed that with increasing thermal input, as-built AlSi10Mg exhibited a microstructural evolution similar to annealing of cold-worked metals, namely recovery, recrystallisation followed by grain-growth. The excessive energy stored in as-built microstructure due to fast cooling during LPBF was deduced as the driving force for this phenomenon. Therefore, such microstructural change was at the expense of dislocations stored in the as-built material, which in turn caused deterioration in tensile strength. The present findings may provide guidance for the application of LPBFed AlSi10Mg.
KW - AlSi10Mg
KW - deformation-free recrystallisation (DFRX)
KW - laser powder bed fusion (LPBF)
KW - thermal stability
UR - http://www.scopus.com/inward/record.url?scp=85148425375&partnerID=8YFLogxK
U2 - 10.1080/17452759.2023.2165122
DO - 10.1080/17452759.2023.2165122
M3 - 文章
AN - SCOPUS:85148425375
SN - 1745-2759
VL - 18
JO - Virtual and Physical Prototyping
JF - Virtual and Physical Prototyping
IS - 1
M1 - e2165122
ER -