TY - JOUR
T1 - Assessing regularity and variability of cortical folding patterns of working memory ROIs
AU - Chen, Hanbo
AU - Zhang, Tuo
AU - Li, Kaiming
AU - Hu, Xintao
AU - Guo, Lei
AU - Liu, Tianming
PY - 2011
Y1 - 2011
N2 - Cortical folding patterns are believed to be good predictors of brain cytoarchitecture and function. For instance, neuroscientists frequently apply their domain knowledge to identify brain Regions of Interests (ROIs) based on cortical folding patterns. However, quantitative mapping of cortical folding pattern and brain function has not been established yet in the literature. This paper presents our initial effort in quantification of the regularity and variability of cortical folding pattern features for working memory ROIs identified by taskbased fMRI, which is widely accepted as a standard approach to localize functionally-specialized brain regions. Specifically, we used a set of shape attributes for each ROI base on multiple resolution decomposition of cortical surfaces, and described the meso-scale folding pattern via a polynomial-based approach. We also applied brain atlas label distribution as a global-scale description of ROI folding pattern. Our studies suggest that there is deep-rooted regularity of cortical folding patterns for certain working memory ROIs across subjects, and folding pattern attributes could be useful for the characterization, recognition and prediction of ROIs, if extracted and applied in a proper way.
AB - Cortical folding patterns are believed to be good predictors of brain cytoarchitecture and function. For instance, neuroscientists frequently apply their domain knowledge to identify brain Regions of Interests (ROIs) based on cortical folding patterns. However, quantitative mapping of cortical folding pattern and brain function has not been established yet in the literature. This paper presents our initial effort in quantification of the regularity and variability of cortical folding pattern features for working memory ROIs identified by taskbased fMRI, which is widely accepted as a standard approach to localize functionally-specialized brain regions. Specifically, we used a set of shape attributes for each ROI base on multiple resolution decomposition of cortical surfaces, and described the meso-scale folding pattern via a polynomial-based approach. We also applied brain atlas label distribution as a global-scale description of ROI folding pattern. Our studies suggest that there is deep-rooted regularity of cortical folding patterns for certain working memory ROIs across subjects, and folding pattern attributes could be useful for the characterization, recognition and prediction of ROIs, if extracted and applied in a proper way.
KW - folding pattern
KW - prediction
KW - ROI
UR - http://www.scopus.com/inward/record.url?scp=82255196338&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-23629-7_39
DO - 10.1007/978-3-642-23629-7_39
M3 - 会议文章
C2 - 21995044
AN - SCOPUS:82255196338
SN - 0302-9743
VL - 6892 LNCS
SP - 318
EP - 326
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
IS - PART 2
T2 - 14th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2011
Y2 - 18 September 2011 through 22 September 2011
ER -