Applying RBF neural network to missile control system parameter optimization

Supeng Zhu, Wenxing Fu, Jun Yang, Jianjun Luo

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

The PID ( proportional, integral, differential ) control method is widely applied to missile attitude control. The usual empirical method for optimizing the three control parameters of Kp, Ki and Kd can not optimize them on line and in real time. The paper presents the PID parameter optimization method that uses RBF neural network, applies it to a missile's longitudinal control system parameter optimization and verifies its effectiveness through numerical simulation. The simulation results demonstrate preliminarily that the use of RBF neural network can optimize the missile control system parameters on line and in real time.

源语言英语
主期刊名CAR 2010 - 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics
337-340
页数4
DOI
出版状态已出版 - 2010
活动2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2010 - Wuhan, 中国
期限: 6 3月 20107 3月 2010

出版系列

姓名CAR 2010 - 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics
2

会议

会议2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2010
国家/地区中国
Wuhan
时期6/03/107/03/10

指纹

探究 'Applying RBF neural network to missile control system parameter optimization' 的科研主题。它们共同构成独一无二的指纹。

引用此