TY - GEN
T1 - Application of direct and surrogate-based optimization to two-dimensional benchmark aerodynamic problems
T2 - 53rd AIAA Aerospace Sciences Meeting, 2015
AU - Tesfahunegn, Yonatan A.
AU - Koziel, Slawomir
AU - Gramanzini, Joe Ray
AU - Hosder, Serhat
AU - Han, Zhong Hua
AU - Leifsson, Leifur
N1 - Publisher Copyright:
© 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2015
Y1 - 2015
N2 - This paper presents the results of applying direct and surrogate-based optimization (SBO) algorithms to two-dimensional aerodynamic benchmark problems, both involving transonic flow, one invisvid and the other viscous. The direct optimization methods used in this study are the adjoint-based FUN3D and Stanford University Unstructured solvers. The SBO algorithms include the SurroOpt framework, which exploits approximation-based models, the multi-level optimization (MLO) algorithm, which relies on physics-based models, as well as the adjoint-enhanced MLO algorithm. The results demonstrate that direct optimization and the approximation-based methods are able to yield designs that are comparable to those obtained with high-dimensional shape parameterization methods. Physics-based SBO shows a rapid design improvement at a low computational cost compared to the direct and the approximation-based SBO techniques, which indicates that-for certain problems-derivative-free methods may be competitive to adjoint-based algorithms when embedded in surrogate-assisted frameworks. On the other hand, global search approaches, while more expensive, exhibit the potential to produce the best quality results.
AB - This paper presents the results of applying direct and surrogate-based optimization (SBO) algorithms to two-dimensional aerodynamic benchmark problems, both involving transonic flow, one invisvid and the other viscous. The direct optimization methods used in this study are the adjoint-based FUN3D and Stanford University Unstructured solvers. The SBO algorithms include the SurroOpt framework, which exploits approximation-based models, the multi-level optimization (MLO) algorithm, which relies on physics-based models, as well as the adjoint-enhanced MLO algorithm. The results demonstrate that direct optimization and the approximation-based methods are able to yield designs that are comparable to those obtained with high-dimensional shape parameterization methods. Physics-based SBO shows a rapid design improvement at a low computational cost compared to the direct and the approximation-based SBO techniques, which indicates that-for certain problems-derivative-free methods may be competitive to adjoint-based algorithms when embedded in surrogate-assisted frameworks. On the other hand, global search approaches, while more expensive, exhibit the potential to produce the best quality results.
UR - http://www.scopus.com/inward/record.url?scp=84980378332&partnerID=8YFLogxK
U2 - 10.2514/6.2015-0265
DO - 10.2514/6.2015-0265
M3 - 会议稿件
AN - SCOPUS:84980378332
SN - 9781624103438
T3 - 53rd AIAA Aerospace Sciences Meeting
BT - 53rd AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
Y2 - 5 January 2015 through 9 January 2015
ER -