APOLLOCAR3D: A large 3D car instance understanding benchmark for autonomous driving

Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye Guan, Yuchao Dai, Hao Su, Hongdong Li, Ruigang Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

146 引用 (Scopus)

摘要

Autonomous driving has attracted remarkable attention from both industry and academia. An important task is to estimate 3D properties (e.g. translation, rotation and shape) of a moving or parked vehicle on the road. This task, while critical, is still under-researched in the computer vision community-partially owing to the lack of large scale and fully-annotated 3D car database suitable for autonomous driving research. In this paper, we contribute the first large scale database suitable for 3D car instance understanding-ApolloCar3D. The dataset contains 5,277 driving images and over 60K car instances, where each car is fitted with an industry-grade 3D CAD model with absolute model size and semantically labelled keypoints. This dataset is above 20× larger than PASCAL3D+ and KITTI, the current state-of-the-art. To enable efficient labelling in 3D, we build a pipeline by considering 2D-3D keypoint correspondences for a single instance and 3D relationship among multiple instances. Equipped with such dataset, we build various baseline algorithms with the state-of-the-art deep convolutional neural networks. Specifically, we first segment each car with a pre-trained Mask R-CNN, and then regress towards its 3D pose and shape based on a deformable 3D car model with or without using semantic keypoints. We show that using keypoints significantly improves fitting performance. Finally, we develop a new 3D metric jointly considering 3D pose and 3D shape, allowing for comprehensive evaluation and ablation study.

源语言英语
主期刊名Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
出版商IEEE Computer Society
5447-5457
页数11
ISBN(电子版)9781728132938
DOI
出版状态已出版 - 6月 2019
活动32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, 美国
期限: 16 6月 201920 6月 2019

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2019-June
ISSN(印刷版)1063-6919

会议

会议32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
国家/地区美国
Long Beach
时期16/06/1920/06/19

指纹

探究 'APOLLOCAR3D: A large 3D car instance understanding benchmark for autonomous driving' 的科研主题。它们共同构成独一无二的指纹。

引用此