Any-Size-Diffusion: Toward Efficient Text-Driven Synthesis for Any-Size HD Images

Qingping Zheng, Yuanfan Guo, Jiankang Deng, Jianhua Han, Ying Li, Songcen Xu, Hang Xu

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Stable diffusion, a generative model used in text-to-image synthesis, frequently encounters resolution-induced composition problems when generating images of varying sizes.This issue primarily stems from the model being trained on pairs of single-scale images and their corresponding text descriptions.Moreover, direct training on images of unlimited sizes is unfeasible, as it would require an immense number of text-image pairs and entail substantial computational expenses.To overcome these challenges, we propose a two-stage pipeline named Any-Size-Diffusion (ASD), designed to efficiently generate well-composed HD images of any size, while minimizing the need for high-memory GPU resources.Specifically, the initial stage, dubbed Any Ratio Adaptability Diffusion (ARAD), leverages a selected set of images with a restricted range of ratios to optimize the text-conditional diffusion model, thereby improving its ability to adjust composition to accommodate diverse image sizes.To support the creation of images at any desired size, we further introduce a technique called Fast Seamless Tiled Diffusion (FSTD) at the subsequent stage.This method allows for the rapid enlargement of the ASD output to any high-resolution size, avoiding seaming artifacts or memory overloads.Experimental results on the LAION-COCO and MM-CelebA-HQ benchmarks show that ASD can produce well-structured images of arbitrary sizes, cutting down the inference time by 2× compared to the traditional tiled algorithm.The source code is available at https://github.com/ProAirVerse/Any-Size-Diffusion.

源语言英语
主期刊名Technical Tracks 14
编辑Michael Wooldridge, Jennifer Dy, Sriraam Natarajan
出版商Association for the Advancement of Artificial Intelligence
7571-7578
页数8
版本7
ISBN(电子版)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOI
出版状态已出版 - 25 3月 2024
活动38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, 加拿大
期限: 20 2月 202427 2月 2024

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号7
38
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议38th AAAI Conference on Artificial Intelligence, AAAI 2024
国家/地区加拿大
Vancouver
时期20/02/2427/02/24

指纹

探究 'Any-Size-Diffusion: Toward Efficient Text-Driven Synthesis for Any-Size HD Images' 的科研主题。它们共同构成独一无二的指纹。

引用此