TY - JOUR
T1 - Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions
AU - Lu, Jian
AU - Wu, Yilin
AU - Lin, Xinyu
AU - Gao, Jia
AU - Dong, Hongjun
AU - Chen, Li
AU - Qin, Yingying
AU - Wang, Liang
AU - Yan, Yongsheng
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/7/5
Y1 - 2018/7/5
N2 - The increasing amount of europium in aqueous environment from rare earth industry has become a serious environmental challenge. Significant efforts have been focused on ion-imprinting membranes (IIMs) for selective separation of ions from analogues. Based on ion-imprinting technique, we have developed Eu3+-imprinted nanocomposite membranes (Eu-IIMs) for selectively separating Eu3+ from La3+, Gd3+ and Sm3+. Polydopamine (pDA) was previously synthesized on basal membranes to augment the interfacial adhesion. Grapheme oxide (GO) and modified silicon dioxide (kSiO2) were synergistically stacked on pDA-modified substrates to form hydrophilic nanocomposite membranes. Ag nanoparticles were modified on the surface to enhance anti-fouling performance. The temperature-controlled selective recognition sites were formed using N-isopropylacrylamide (NIPAm) and acrylamide (Am) as functional monomers as well as europium ions as templates by RAFT (reversible addition-fragmentation chain transfer) method. Large enhanced Eu3+-rebinding capacity (101.14 mg g−1), adsorptive selectivity (1.82, 1.57, 1.45 for Eu3+/La3+, Eu3+/Gd3+, Eu3+/Sm3+) and permselectivity (3.82, 3.47, 3.34 for La3+/Eu3+, Gd3+/Eu3+, Sm3+/Eu3+) were achieved on Eu-IIMs with superior regeneration performance. Additionally, the negligible damage of the membranes after buried for 20 d indicated the superior anti-fouling property of the Eu-IIMs. The ion-imprinted nanocomposite membranes synthesized in this work have shown great potentials for selective separation of rare earth ions.
AB - The increasing amount of europium in aqueous environment from rare earth industry has become a serious environmental challenge. Significant efforts have been focused on ion-imprinting membranes (IIMs) for selective separation of ions from analogues. Based on ion-imprinting technique, we have developed Eu3+-imprinted nanocomposite membranes (Eu-IIMs) for selectively separating Eu3+ from La3+, Gd3+ and Sm3+. Polydopamine (pDA) was previously synthesized on basal membranes to augment the interfacial adhesion. Grapheme oxide (GO) and modified silicon dioxide (kSiO2) were synergistically stacked on pDA-modified substrates to form hydrophilic nanocomposite membranes. Ag nanoparticles were modified on the surface to enhance anti-fouling performance. The temperature-controlled selective recognition sites were formed using N-isopropylacrylamide (NIPAm) and acrylamide (Am) as functional monomers as well as europium ions as templates by RAFT (reversible addition-fragmentation chain transfer) method. Large enhanced Eu3+-rebinding capacity (101.14 mg g−1), adsorptive selectivity (1.82, 1.57, 1.45 for Eu3+/La3+, Eu3+/Gd3+, Eu3+/Sm3+) and permselectivity (3.82, 3.47, 3.34 for La3+/Eu3+, Gd3+/Eu3+, Sm3+/Eu3+) were achieved on Eu-IIMs with superior regeneration performance. Additionally, the negligible damage of the membranes after buried for 20 d indicated the superior anti-fouling property of the Eu-IIMs. The ion-imprinted nanocomposite membranes synthesized in this work have shown great potentials for selective separation of rare earth ions.
KW - Europium ions
KW - Grapheme oxide
KW - Selective separation
KW - Silicon dioxide
KW - Thermosensitive ion-imprinted membrane
UR - http://www.scopus.com/inward/record.url?scp=85045474498&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2018.04.014
DO - 10.1016/j.jhazmat.2018.04.014
M3 - 文章
C2 - 29674099
AN - SCOPUS:85045474498
SN - 0304-3894
VL - 353
SP - 244
EP - 253
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -