TY - JOUR
T1 - Analysis of muscle synergies and muscle network in sling exercise rehabilitation technique
AU - Li, Xin
AU - Xu, Guixing
AU - Li, Le
AU - Hao, Zengming
AU - Lo, Wai Leung Ambrose
AU - Wang, Chuhuai
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/12
Y1 - 2024/12
N2 - The study assessed motor control strategies across the four sling exercises of supine sling exercise (SSE), prone sling exercise (PSE), left side-lying sling exercise (LLSE), and right side-lying sling exercise (RLSE) positions base on the muscle synergies and muscle network analyses. Muscle activities of bilateral transversus abdominis (TA), rectus abdominis, multifidus (MF), and erector spinae (ES) were captured via surface electromyography. Muscle synergies were extracted through principal components analysis (PCA) and non-negative matrix factorization (NNMF). Muscle synergies number, muscle synergies complexity, muscle synergies sparseness, muscle synergies clusters and muscle networks were calculated. PCA results indicated that SSE and PSE decomposed into 2.88 ± 0.20 and 2.82 ± 0.15 synergies respectively, while the LLSE and RLSE positions decomposed into 3.76 ± 0.14 and 3.71 ± 0.11 muscle synergies, respectively, which were more complex (P = 0.00) but less sparse (P = 0.01). Muscle synergies clusters analysis indicated common muscle synergies among different sling exercises. SSE position demonstrated specific muscle synergies with a strong contribution of the bilateral TA. LLSE-specific synergy has a strong contribution of the left erector spinae (ES). The RLSE-specific synergy has significant contributions from the right ES and multifidus. Muscle networks were functionally organized, with clustering coefficient (F(1.5, 24) = 6.041, P = 0.01) and global efficiency of the undirected network (F(1.5, 24) = 6.041, P = 0.01), and betweenness-centrality of the directed network (F(2.7, 44) = 6.453, P = 0.00). Our research highlights the importance of evaluating muscle synergies and network adaptation strategies in individuals with neuromuscular disorders and developing targeted therapeutic interventions accordingly.
AB - The study assessed motor control strategies across the four sling exercises of supine sling exercise (SSE), prone sling exercise (PSE), left side-lying sling exercise (LLSE), and right side-lying sling exercise (RLSE) positions base on the muscle synergies and muscle network analyses. Muscle activities of bilateral transversus abdominis (TA), rectus abdominis, multifidus (MF), and erector spinae (ES) were captured via surface electromyography. Muscle synergies were extracted through principal components analysis (PCA) and non-negative matrix factorization (NNMF). Muscle synergies number, muscle synergies complexity, muscle synergies sparseness, muscle synergies clusters and muscle networks were calculated. PCA results indicated that SSE and PSE decomposed into 2.88 ± 0.20 and 2.82 ± 0.15 synergies respectively, while the LLSE and RLSE positions decomposed into 3.76 ± 0.14 and 3.71 ± 0.11 muscle synergies, respectively, which were more complex (P = 0.00) but less sparse (P = 0.01). Muscle synergies clusters analysis indicated common muscle synergies among different sling exercises. SSE position demonstrated specific muscle synergies with a strong contribution of the bilateral TA. LLSE-specific synergy has a strong contribution of the left erector spinae (ES). The RLSE-specific synergy has significant contributions from the right ES and multifidus. Muscle networks were functionally organized, with clustering coefficient (F(1.5, 24) = 6.041, P = 0.01) and global efficiency of the undirected network (F(1.5, 24) = 6.041, P = 0.01), and betweenness-centrality of the directed network (F(2.7, 44) = 6.453, P = 0.00). Our research highlights the importance of evaluating muscle synergies and network adaptation strategies in individuals with neuromuscular disorders and developing targeted therapeutic interventions accordingly.
KW - Motor control
KW - Muscle network
KW - Muscle synergies analysis
KW - Non-negative matrix factorization
KW - Principal components analysis
KW - Rehabilitation
KW - Sling exercise
UR - http://www.scopus.com/inward/record.url?scp=85205907379&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2024.109166
DO - 10.1016/j.compbiomed.2024.109166
M3 - 文章
C2 - 39388842
AN - SCOPUS:85205907379
SN - 0010-4825
VL - 183
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 109166
ER -