An Optimization Study of Circumferential Groove Casing Treatment in a High-Speed Axial Flow Compressor

Wenhao Liu, Wuli Chu, Haoguang Zhang, Hao Wang

科研成果: 期刊稿件文章同行评审

摘要

In this paper, a n umerical optimization study of single-groove casing treatment was conducted on a high-speed axial compressor. One of the aims is to find the optimal structure of a single groove that can improve compressor stability with minimal loss in efficiency. Another aim is to explore suitable parameters for rapidly evaluating the compressor stall margin. A design optimization platform has been constructed in this paper, which utilizes NSGA-II and a Radial Basis Function (RBF) neural net model to carry out the optimization. The stall margin of the compressor with A single groove was accurately determined by calculating its entire overall performance line. A Pareto front is obtained through optimization, and the optimal design can be selected from the Pareto front. By considering both stall margin and efficiency loss, one of the optimal designs was found to achieve a 7.49% improvement in stall margin with a 0.24% improvement in peak efficiency. Based on the database, the effect of design parameters of a single groove on compressor stability and performance is analyzed. A series of evaluation parameters of stall margin were compared to their degree of correlation with the real stall margin calculated by the entire overall performance line. As a result, tip blockage and momentum ratio can be used as efficient parameters for quickly evaluating the compressor stall margin without the need to calculate the entire performance curve of the compressor.

源语言英语
文章编号541
期刊Aerospace
11
7
DOI
出版状态已出版 - 7月 2024

指纹

探究 'An Optimization Study of Circumferential Groove Casing Treatment in a High-Speed Axial Flow Compressor' 的科研主题。它们共同构成独一无二的指纹。

引用此