An object-oriented visual saliency detection framework based on sparse coding representations

Junwei Han, Sheng He, Xiaoliang Qian, Dongyang Wang, Lei Guo, Tianming Liu

科研成果: 期刊稿件文章同行评审

98 引用 (Scopus)

摘要

Saliency detection aims at quantitatively predicting attended locations in an image. It may mimic the selection mechanism of the human vision system, which processes a small subset of a massive amount of visual input while the redundant information is ignored. Motivated by the biological evidence that the receptive fields of simple cells in V1 of the vision system are similar to sparse codes learned from natural images, this paper proposes a novel framework for saliency detection by using image sparse coding representations as features. Unlike many previous approaches dedicated to examining the local or global contrast of each individual location, this paper develops a probabilistic computational algorithm by integrating objectness likelihood with appearance rarity. In the proposed framework, image sparse coding representations are yielded through learning on a large amount of eye-fixation patches from an eye-tracking dataset. The objectness likelihood is measured by three generic cues called compactness, continuity, and center bias. The appearance rarity is inferred by using a Gaussian mixture model. The proposed paper can serve as a basis for many techniques such as image/video segmentation, retrieval, retargeting, and compression. Extensive evaluations on benchmark databases and comparisons with a number of up-to-date algorithms demonstrate its effectiveness.

源语言英语
文章编号6419789
页(从-至)2009-2021
页数13
期刊IEEE Transactions on Circuits and Systems for Video Technology
23
12
DOI
出版状态已出版 - 12月 2013

指纹

探究 'An object-oriented visual saliency detection framework based on sparse coding representations' 的科研主题。它们共同构成独一无二的指纹。

引用此