TY - JOUR
T1 - An Integrated Solution for Online Multichannel Noise Tracking and Reduction
AU - Souden, Mehrez
AU - Benesty, Jacob
AU - Affes, Sofiène
AU - Chen, Jingdong
PY - 2011/9
Y1 - 2011/9
N2 - Noise statistics estimation is a paramount issue in the design of reliable noise-reduction algorithms. Although significant efforts have been devoted to this problem in the literature, most developed methods so far have focused on the single-channel case. When multiple microphones are used, it is important that the data from all the sensors are optimally combined to achieve judicious updates of the noise statistics and the noise-reduction filter. This contribution is devoted to the development of a practical approach to multichannel noise tracking and reduction. We combine the multichannel speech presence probability (MC-SPP) that we proposed in an earlier contribution with an alternative formulation of the minima-controlled recursive averaging (MCRA) technique that we generalize from the single-channel to the multichannel case. To demonstrate the effectiveness of the proposed MC-SPP and multichannel noise estimator, we integrate them into three variants of the multichannel noise reduction Wiener filter. Experimental results show the advantages of the proposed solution.
AB - Noise statistics estimation is a paramount issue in the design of reliable noise-reduction algorithms. Although significant efforts have been devoted to this problem in the literature, most developed methods so far have focused on the single-channel case. When multiple microphones are used, it is important that the data from all the sensors are optimally combined to achieve judicious updates of the noise statistics and the noise-reduction filter. This contribution is devoted to the development of a practical approach to multichannel noise tracking and reduction. We combine the multichannel speech presence probability (MC-SPP) that we proposed in an earlier contribution with an alternative formulation of the minima-controlled recursive averaging (MCRA) technique that we generalize from the single-channel to the multichannel case. To demonstrate the effectiveness of the proposed MC-SPP and multichannel noise estimator, we integrate them into three variants of the multichannel noise reduction Wiener filter. Experimental results show the advantages of the proposed solution.
KW - Microphone array
KW - minima controlled recursive averaging (MCRA)
KW - multichannel noise reduction
KW - multichannel speech presence probability (MC-SPP)
KW - noise estimation
UR - http://www.scopus.com/inward/record.url?scp=85008564364&partnerID=8YFLogxK
U2 - 10.1109/TASL.2011.2118205
DO - 10.1109/TASL.2011.2118205
M3 - 文章
AN - SCOPUS:85008564364
SN - 1558-7916
VL - 19
SP - 2159
EP - 2169
JO - IEEE Transactions on Audio, Speech and Language Processing
JF - IEEE Transactions on Audio, Speech and Language Processing
IS - 7
ER -