An improved measure for belief structure in the evidence theory

Qiang Zhang, Hao Li, Rongfei Li, Yongchuan Tang

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Dempster–Shafer evidence theory (D–S theory) is suitable for processing uncertain information under complex circumstances. However, how to measure the uncertainty of basic probability distribution (BPA) in D–S theory is still an open question. In this paper, a method of measuring total uncertainty based on belief interval distance is proposed. This method is directly defined in the D–S theoretical framework, without the need of converting BPA into probability distribution by Pignistic probability transformation. Thus, it avoids the loss of information. This paper analyzes the advantages and disadvantages of the previous total uncertainty of measurement, and the uncertainty measurement examples show the effectiveness of the new uncertainty measure. Finally, an information fusion method based on the new uncertainty measure is proposed. The validity and rationality of the proposed method are verified by two classification experiments from UCI data sets.

源语言英语
文章编号e710
期刊PeerJ Computer Science
7
DOI
出版状态已出版 - 2021
已对外发布

指纹

探究 'An improved measure for belief structure in the evidence theory' 的科研主题。它们共同构成独一无二的指纹。

引用此