An Balanced, and Scalable Graph-Based Multiview Clustering Method

Zihua Zhao, Feiping Nie, Rong Wang, Zheng Wang, Xuelong Li

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

In recent years, graph-based multiview clustering methods have become a research hotspot in the clustering field. However, most existing methods lack consideration of cluster balance in their results. In fact, cluster balance is crucial in many real-world scenarios. Additionally, graph-based multiview clustering methods often suffer from high time consumption and cannot handle large-scale datasets. To address these issues, this paper proposes a novel graph-based multiview clustering method. The method is built upon the bipartite graph. Specifically, it employs a label propagation mechanism to update the smaller anchor label matrix rather than the sample label matrix, significantly reducing the computational cost. The introduced balance constraint in the proposed model contributes to achieving balanced clustering results. The entire clustering model combines information from multiple views through graph fusion. The joint graph and view weight parameters in the model are obtained through task-driven self-supervised learning. Moreover, the model can directly obtain clustering results without the need for the two-stage processing typically used in general spectral clustering. Finally, extensive experiments on toy datasets and real-world datasets are conducted to validate the superiority of the proposed method in terms of clustering performance, clustering balance, and time expenditure.

源语言英语
页(从-至)7643-7656
页数14
期刊IEEE Transactions on Knowledge and Data Engineering
36
12
DOI
出版状态已出版 - 2024

指纹

探究 'An Balanced, and Scalable Graph-Based Multiview Clustering Method' 的科研主题。它们共同构成独一无二的指纹。

引用此